
circom

Saravanan Vijayakumaran

Associate Professor
Department of Electrical Engineering
Indian Institute of Technology Bombay

April 4, 2024

1 / 13

circom
• circom = circuit compiler
• A toolchain for expressing statements that can be proved in

zero-knowledge
• Uses Groth16 as the proving system

• https://eprint.iacr.org/2016/260

• Proofs can be verified in an Ethereum smart contract
• Gas costs ≈ 181,000 + 6,150 ×k where k is the number of public

inputs
• For gas price 20 gwei/gas and $3000/ETH, it costs $12 to verify a

proof with 3 public inputs
• Used by Tornado Cash, Dark Forest

2 / 13

https://eprint.iacr.org/2016/260

Proving Statements using SNARKs
• SNARK = Succinct Non-interactive Arguments of Knowledge

• Protocols that enable verifiable computation
• Succinct = Proofs are smaller than size of statement
• Non-interactive = A single message from prover to verifier
• Argument = Soundness only guaranteed for PPT provers
• Knowledge = Prover knows a witness (secret information)

• zkSNARK = Zero-Knowledge SNARK
• To prove statements using SNARKs, they have to be expressed

as arithmetic circuits
• Circuit variables are prime field elements
• Only addition and multiplication are allowed

• Prime fields
• Fp = {0, 1, . . . , p − 1} where p is a prime
• Arithmetic modulo p

• R1CS is one method for arithmetizing statements

3 / 13

Rank-1 Constraint Systems
• Statement is represented using quadratic constraints of the form(

u0 +
n∑

i=1

aiui

)
·

(
v0 +

n∑
i=1

aivi

)
=

(
w0 +

n∑
i=1

aiwi

)
• The ui , vi ,wi values are determined by the statement
• The ai ’s are witness values specific to the instance
• Why rank 1?(

u0 +
n∑

i=1

aiui

)
·

(
v0 +

n∑
i=1

aivi

)
= ⟨u, (1,a)⟩ · ⟨v, (1,a)⟩

=
[
1 a

]


u0
u1
...

un

 [v0 v1 · · · vn
]

︸ ︷︷ ︸
M

[
1

aT

]

• The matrix M has rank one
4 / 13

Boolean Gates in R1CS
• AND and OR Gates

• If a ∈ Fp = {0, 1, . . . , p − 1} satisfies a(1 − a) = 0, then a ∈ {0, 1}
• Given a1(1 − a1) = 0, a2(1 − a2) = 0

• a3 = a1 ∧ a2 is expressed as

a1a2 = a3

• a3 = a1 ∨ a2 is expressed as

(1 − a1) · (1 − a2) = 1 − a3

• XOR Gate
• Given a1(1 − a1) = 0, a2(1 − a2) = 0, we can express a3 = a1 ⊕ a2

as
(a1 + a1) · a2 = a1 + a2 − a3.

• If a2 = 0, then a3 = a1
• If a2 = 1, then a3 = 1 − a1

• NOT Gate
• Given a1(1 − a1) = 0, we can express a2 = ¬a1 as

(1 − a1) · 1 = a2.

5 / 13

Signals in circom
• Example circuit

pragma circom 2.1.6;

template Multiplier2(){
//Declaration of signals
signal input in1;
signal input in2;
signal tmp;
tmp <== in1 * in2;
signal output out <== tmp * in2;

}

component main {public [in1, in2]} = Multiplier2();

• Signals: Field elements that appear in an arithmetic circuit
• A signal is immutable; once assigned it cannot change
• A circuit is made up of subcircuits (components)
• In a component, signals can be inputs, outputs, or neither
• Input signals are private by default
• List of public signals are declared in the main component

6 / 13

The <== operator
• Recall the R1CS constraint structure(

w0 +
n∑

i=1

aiwi

)
=

(
u0 +

n∑
i=1

aiui

)
·

(
v0 +

n∑
i=1

aivi

)

• The === operator constrains a linear combination to equal a
product of two linear combinations

a*(a-1) === 0;

• The <== operator is a combination of an assignment operator
<-- and the === operator

out <-- a*b;
out === a*b;
// The line below is equivalent to the above statements
out <== a*b;

• Sometimes the <-- and === operators cannot be combined

a <-- b/c;
a*c === b;

7 / 13

Arrays of Signals and Components
• Signals can be organized in arrays

signal input in[3];
signal output out[2];
signal intermediate[4];

• Components (subcircuits) can also be organized as arrays
template fun(N){
signal output out;
out <== N;

}

template all(N){
component c[N];
for(var i = 0; i < N; i++){

c[i] = fun(i);
}

}

component main = all(5);

• Aside: var keyword denotes mutable variables that hold
non-signal data

8 / 13

Example: Multiplexer
• Multiplexer circuit

template MultiMux(n) {
signal input c[n][2]; // Inputs
signal input s; // Selector
signal output out[n];

s * (s-1) === 0;

for (var i=0; i<n; i++) {
out[i] <== (c[i][1] - c[i][0])*s + c[i][0];

}
}

component main = MultiMux(3);

• If s=0, then out[i] <== c[i][0]

• If s=1, then out[i] <== c[i][1]

9 / 13

Example: Zero Equality Check
• Suppose we want to check that an input is zero

template IsZero() {
signal input in;
signal output out;

signal inv;

inv <-- in!=0 ? 1/in : 0;

out <== -in*inv +1;
in*out === 0;

}

• The value of inv is non-deterministic advice
• If in is zero, then out <== 1

• If in is non-zero, then out must be zero

10 / 13

Example: Bit Decomposition
• Suppose we want to decompose a signal in the range

{0,1,2, . . . ,2n − 1} into n bits
template Num2Bits(n) {

signal input in;
signal output out[n];
var lc1=0;

var e2=1;
for (var i = 0; i<n; i++) {

out[i] <-- (in >> i) & 1;
out[i] * (out[i] -1) === 0;
lc1 += out[i] * e2;
e2 = e2+e2;

}

lc1 === in;
}

• The value of out[i] is derived from in
• out[i] is constrained to be a bit
• e2 contains powers of 2
• The final constraint lc1 === in will be satisfied if in fits in n

bits
11 / 13

Tornado Cash Circuits
• Merkle tree checker

• https://github.com/tornadocash/tornado-core/blob/
master/circuits/merkleTree.circom

• Withdrawal checker
• https://github.com/tornadocash/tornado-core/blob/
master/circuits/withdraw.circom

12 / 13

https://github.com/tornadocash/tornado-core/blob/master/circuits/merkleTree.circom
https://github.com/tornadocash/tornado-core/blob/master/circuits/merkleTree.circom
https://github.com/tornadocash/tornado-core/blob/master/circuits/withdraw.circom
https://github.com/tornadocash/tornado-core/blob/master/circuits/withdraw.circom

References
• circom https://docs.circom.io/

• circom repo https://github.com/iden3/circom

• Pairing gas costs https://eips.ethereum.org/EIPS/eip-1108
• Groth16 gas costs https://hackmd.io/@nebra-one/ByoMB8Zf6
• zkrepl https://zkrepl.dev/
• zkrepl examples
https://zkrepl.dev/?gist=3c7dd7c018813923e44f2492695274d1

• Tornado Cash circuits https:
//github.com/tornadocash/tornado-core/tree/master/circuits

• Dark Forest circuits https://github.com/darkforest-eth/circuits
• circomlib circuits https://github.com/iden3/circomlib

13 / 13

https://docs.circom.io/
https://github.com/iden3/circom
https://eips.ethereum.org/EIPS/eip-1108
https://hackmd.io/@nebra-one/ByoMB8Zf6
https://zkrepl.dev/
https://zkrepl.dev/?gist=3c7dd7c018813923e44f2492695274d1
https://github.com/tornadocash/tornado-core/tree/master/circuits
https://github.com/tornadocash/tornado-core/tree/master/circuits
https://github.com/darkforest-eth/circuits
https://github.com/iden3/circomlib

