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Elliptic Curves Over Real Numbers



Elliptic Curves over Reals

The set E of real solutions (x, y) of
v =x®4+ax+b

along with a “point of infinity” ©. Here 4a° + 27b% # 0.
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Point Addition (1/3)

P=(x1,5), Q= (xe, y2)

X1 # Xz
P+Q=R

R= (X37y3)

Xo — X4

V3= (H) (x1 —Xx3) — 1
R _

X2

I 2
: XS:(Yz—}ﬁ) X x

X1
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Point Addition (2/3)

P:(X17Y1)aQ:(X27Y2)
X1 =X, 1= —)e
P+Q=0

0<«>h<3
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Point Addition (3/3)

P= (X17y1)aQ: (X27Y2)
X1 =X, y1=Y2 #0
P+Q=R
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Elliptic Curves Over Finite Fields



Elliptic Curves over Finite Fields
For char(F) # 2,3, the set E of solutions (x, y) in F? of

v =x®t+ax+b

along with a “point of infinity” ©. Here 4a° 4 27b° # 0.
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y? = x3 4+ 10x + 2 over Fy; y? = x3 + 9x over Fyq
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Point Addition for Finite Field Curves

Point addition formulas derived for reals are used

Example: y? = x3 4+ 10x + 2 over Fy4

+ @] 3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)

0] o (32 (3,9 (1) (510 (65 (6,6 (8,0
(8,2) | (8,2) (6,6) 0o (6,5) (8,0) (3,9) (510) (51)
(3,9 | 39 o (65 (80) (66) (51 (3,2) (510)
(5,1) | (5.1) (6,5 (8,0) (6.6) © (510) (3,9) (3,2
(5,10) | (5,10) (8,0) (6.6) © (6,5 (3.2) (51) (3,9
6,5 | (6,5 (3.9 (51) (510) (3.2) (8,00 O  (6,6)
6,6) | (6,6) (510) (3.2) (3.9 (5.1) © (8,00 (6,5)
8,0) | (80) (51) (5100 (3,2) (3,9) (6,6) (6,5 O

The set E U O is closed under addition
In fact, its a group
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Bitcoin’s Elliptic Curve: secp256k1

y? = x3 4+ 7 over F, where

p =FFFFFFEFF

48 hexadecimal digits

FFFFFFFF FEFFFFFFE FFFFFC2F

:2256_232_29_28_27_26_24_1

E U O has cardinality n where

n= FFFFFFFEF FFFFFFEFE FFFFFFFE FEFFFEFE
BAAEDCE6 AF48A03B BFD25ES8C D0364141

Private key is k € {1,2,...,n—1}
Public key is kP where P = (x, y)

X =79BE667E FIDCBBAC
029BFCDB 2DCE28D9
y =483ADA77 26A3C465
FD17B448 A6855419

55A06295
59F2815B
5DA4FBFC
9C47D08F

CE870B07
16F81798,
OE1108A8
FB10D4BS.
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Point Multiplication using Double-and-Add

® Point multiplication: kP calculation from k and P
o Letk = ky + 2ky + 22k + - - - + 2™k, where k; € {0,1}
¢ Double-and-Add algorithm

®* SetN=Pand Q=0

e fori=0,1,....m
° ifki=1,setQ+ Q+ N
® Set N < 2N

® Return Q
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The Discrete Logarithm Problem

Given public key kP, finding private key k requires solving the
discrete logarithm problem

Definition: If G is a cyclic group of order g with generator g,
then for h € G the unique x € Zy which satisfies g* = h is called
the discrete logarithm of h with respect to g.

DLP is hard in prime order subgroups of F,,
DLP is hard in some elliptic curve groups
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takes O(2") time

Why ECC?

e Effective key length is a value n such that the best known attack

¢ NIST recommended key lengths

Effective | RSA Modulus Order ¢ Elliptic curve
key length N Subgroup of Z; | group order ¢
112 2048 p: 2048, q: 224 224
128 3072 p: 3072, q: 256 256
192 7680 p: 7680, ¢: 384 384
256 15360 p: 15360, ¢: 512 512
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Elliptic Curve Digital Signature Algorithm



Digital Signatures

¢ Digital signatures prove that the signer knows private key

Message

l

Signer

— (Message, Signature) —»|

Decision on

Verifier |—> Signature Validity

!

Signer’s
Private Key

T

Signer’s
Public Key
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Schnorr Identification Scheme

Let G be a cyclic group of order g with generator g
Identity corresponds to knowledge of private key x where h = g*
A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k < Zq and sends initial message / = g*

2. Verifier sends a challenge r + Zq

3. Prover sends s = rx + k mod q

4. Verifier checks g° - h™" 2
Passive eavesdropping does not reveal x for uniform r

® (/,r)is uniformon G x Zq and s = logy (/- h")

® Transcripts with same distribution can be simulated without

knowing x

® Choose r, s uniformly from Z, and set I = g° - h™"
We can prove that a prover which generates correct proofs must
know x by constructing an extractor for x

® Section 19.1 of Boneh-Shoup
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Schnorr Signature Algorithm

Based on the Schnorr identification scheme

Let G be a cyclic group of order g with generator g
Let H: {0,1}* — Z4 be a cryptographic hash function
Signer knows x € Zq such that public key h = g*

Signer:
1. Oninput m € {0,1}", chooses k «+ Zq
2. Sets | =g~

3. Computes r := H(Il,m)
4. Computes s = rx + k mod q
5. Outputs (r, s) as signature for m

Verifier

1. Oninput mand (r,s)

2. Compute | :=g°-h™"

3. Signature valid if H(/, m) = r
Example of Fiat-Shamir transform
Patented by Claus Schnorr in 1988
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Digital Signature Algorithm

¢ Part of the Digital Signature Standard issued by NIST in 1994
e Based on the following identification protocol

aopwDO =

Suppose prover knows x € Zgq such that public key h = g*
Prover chooses k « Zj and sends / := g*

Verifier chooses uniform «, r € Z4 and sends them

Prover sends s := [k‘1 - (e + xr) mod q] as response
Verifier accepts if s # 0 and

—1 -1 2

gaS .hs I
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Digital Signature Algorithm in [,

* Let g be the generator of a prime order cyclic subgroup of [y of
order q
1. Let H:{0,1}* — Z4 be a cryptographic hash function

2. Let F : F; — Zgq be the function F(x) = x mod q.
3. Signer:
3.1 Oninput m € {0,1}*, chooses k + Zj and sets r := F(g)
3.2 Computes s = [k~" - (H(m) + xr)] mod q
3.3 Ifr=00rs =0, choose k again
3.4 Outputs (r, s) as signature for m

4. Verifier
4.1 Oninput mand (r, s) with r # 0, s # 0 checks

F <gH(m)s_1 hrs“) 2,
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ECDSA in Bitcoin

Signer: Has private key kK and message m

oghwD -

Compute e = SHA-256(SHA-256(m))

Choose a random integer j from F7,

Compute jP = (x, y)

Calculate r = x mod n. If r =0, go to step 2.

Calculate s = j~"(e + kr) mod n. If s = 0, go to step 2.
Output (r, s) as signature for m

Verifier: Has public key kP, message m, and signature (r, s)

SARE ol A

Calculate e = SHA-256(SHA-256(m))
Calculate j; = es™' mod nand j» = rs~
Calculate the point Q = ji P + j»(kP)

If Q = O, then the signature is invalid.
If Q # O, then let Q = (x,y) € F5. Calculate t = x mod n. If t = r,
the signature is valid.

" mod n

As nis a 256-bit integer, signatures are 512 bits long
As j is randomly chosen, ECDSA output is random for same m
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Transaction Malleability



Input 0

Input N — 1

Output 0

Output M — 1

i
{

Transaction ID

Regular Transaction

nVersion

Number of Inputs N

hash

n

scriptSigLen

scriptSig

nSequence

hash

n

scriptSigLen

scriptSig

nSequence

Number of Outputs M

nValue

scriptPubkeyLen

scriptPubkey

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

\

Double
SHA-256
Hash

— TxID
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Refund Protocol

Alice wants to teach Bob about transactions
Bob does not own any bitcoins

Alice decides to transfer some bitcoins to Bob
Alice does not trust Bob

She wants to ensure refund
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Refund Protocol

Transaction t

with TXID 4 Transaction

Input unlocking
Input O X bitcoins from
Alice’s UTXO

Input with hash = iy and
n = 0 unlocking the Input 0
2-of-2 multisig output in t;

Output locked by Output returning

Output 0 2-0f-2 multisig h utput 0
challenge script funds to Alice
Bob Alice Network

1. Create 4

X 2. Create B
th A's sig

4. i
Send e wit 55 5ig oty |
6. Broadcast )

2
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Exploiting Transaction Malleability

Bob Alice Network

1. Create

. 2. Create
with A's 8I9

y
end & with B'g sig 5. Broadcast 4
5. Broadcast fr I
6. Broadcast t \

t!

e If (r,s) is a valid ECDSA signature, sois (r,n — s)
* The {{ transaction cannot be spent by &
e SegWit = Segregated Witness

e Activated in August 2017
® Solves problems arising from transaction malleability
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