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Elliptic Curves Over Real Numbers



Elliptic Curves over Reals
The set E of real solutions (x , y) of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 ̸= 0.
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Point Addition (1/3)
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Q
R′

R

P = (x1, y1),Q = (x2, y2)

x1 ̸= x2

P + Q = R

R = (x3, y3)

x3 =

(
y2 − y1
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− x1 − x2
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(x1 − x3)− y1
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Point Addition (2/3)
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P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = −y2

P + Q = O
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Point Addition (3/3)
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R′

R

P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = y2 ̸= 0
P + Q = R

R = (x3, y3)
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− 2x1

y3 =
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3x2

1 + a
2y1

)
(x1 − x3)− y1
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Elliptic Curves Over Finite Fields



Elliptic Curves over Finite Fields
For char(F ) ̸= 2,3, the set E of solutions (x , y) in F 2 of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 ̸= 0.
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y2 = x3 + 10x + 2 over F11
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Point Addition for Finite Field Curves
• Point addition formulas derived for reals are used
• Example: y2 = x3 + 10x + 2 over F11

+ O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)
O O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)

(3,2) (3,2) (6,6) O (6,5) (8,0) (3,9) (5,10) (5,1)
(3,9) (3,9) O (6,5) (8,0) (6,6) (5,1) (3,2) (5,10)
(5,1) (5,1) (6,5) (8,0) (6,6) O (5,10) (3,9) (3,2)
(5,10) (5,10) (8,0) (6,6) O (6,5) (3,2) (5,1) (3,9)
(6,5) (6,5) (3,9) (5,1) (5,10) (3,2) (8,0) O (6,6)
(6,6) (6,6) (5,10) (3,2) (3,9) (5,1) O (8,0) (6,5)
(8,0) (8,0) (5,1) (5,10) (3,2) (3,9) (6,6) (6,5) O

• The set E ∪ O is closed under addition
• In fact, its a group
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Bitcoin’s Elliptic Curve: secp256k1
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P = (x , y)

x =79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798,

y =483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8.
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Point Multiplication using Double-and-Add
• Point multiplication: kP calculation from k and P
• Let k = k0 + 2k1 + 22k2 + · · ·+ 2mkm where ki ∈ {0,1}
• Double-and-Add algorithm

• Set N = P and Q = O
• for i = 0, 1, . . . ,m

• if ki = 1, set Q ← Q + N
• Set N ← 2N

• Return Q
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The Discrete Logarithm Problem
• Given public key kP, finding private key k requires solving the

discrete logarithm problem
• Definition: If G is a cyclic group of order q with generator g,

then for h ∈ G the unique x ∈ Zq which satisfies gx = h is called
the discrete logarithm of h with respect to g.

• DLP is hard in prime order subgroups of F∗
p

• DLP is hard in some elliptic curve groups
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Why ECC?
• Effective key length is a value n such that the best known attack

takes O(2n) time
• NIST recommended key lengths
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Elliptic Curve Digital Signature Algorithm



Digital Signatures
• Digital signatures prove that the signer knows private key

(Message, Signature)Signer

Message

Signer’s
Private Key

Verifier
Decision on

Signature Validity

Signer’s
Public Key
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Schnorr Identification Scheme
• Let G be a cyclic group of order q with generator g
• Identity corresponds to knowledge of private key x where h = gx

• A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k ← Zq and sends initial message I = gk

2. Verifier sends a challenge r ← Zq

3. Prover sends s = rx + k mod q
4. Verifier checks gs · h−r ?

= I
• Passive eavesdropping does not reveal x for uniform r

• (I, r) is uniform on G × Zq and s = logg(I · hr )
• Transcripts with same distribution can be simulated without

knowing x
• Choose r , s uniformly from Zq and set I = gs · h−r

• We can prove that a prover which generates correct proofs must
know x by constructing an extractor for x
• Section 19.1 of Boneh-Shoup
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Schnorr Signature Algorithm
• Based on the Schnorr identification scheme
• Let G be a cyclic group of order q with generator g
• Let H : {0,1}∗ 7→ Zq be a cryptographic hash function
• Signer knows x ∈ Zq such that public key h = gx

• Signer:
1. On input m ∈ {0, 1}∗, chooses k ← Zq

2. Sets I := gk

3. Computes r := H(I,m)
4. Computes s = rx + k mod q
5. Outputs (r , s) as signature for m

• Verifier
1. On input m and (r , s)
2. Compute I := gs · h−r

3. Signature valid if H(I,m)
?
= r

• Example of Fiat-Shamir transform
• Patented by Claus Schnorr in 1988
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Digital Signature Algorithm
• Part of the Digital Signature Standard issued by NIST in 1994
• Based on the following identification protocol

1. Suppose prover knows x ∈ Zq such that public key h = gx

2. Prover chooses k ← Z∗
q and sends I := gk

3. Verifier chooses uniform α, r ∈ Zq and sends them
4. Prover sends s :=

[
k−1 · (α+ xr) mod q

]
as response

5. Verifier accepts if s ̸= 0 and

gαs−1
· hrs−1 ?

= I
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Digital Signature Algorithm in F∗
p

• Let g be the generator of a prime order cyclic subgroup of F∗
p of

order q
1. Let H : {0, 1}∗ 7→ Zq be a cryptographic hash function
2. Let F : F∗

p 7→ Zq be the function F (x) = x mod q.
3. Signer:

3.1 On input m ∈ {0, 1}∗, chooses k ← Z∗
q and sets r := F (gk )

3.2 Computes s :=
[
k−1 · (H(m) + xr)

]
mod q

3.3 If r = 0 or s = 0, choose k again
3.4 Outputs (r , s) as signature for m

4. Verifier
4.1 On input m and (r , s) with r ̸= 0, s ̸= 0 checks

F
(

gH(m)s−1
hrs−1) ?

= r
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ECDSA in Bitcoin
• Signer: Has private key k and message m

1. Compute e = SHA-256(SHA-256(m))
2. Choose a random integer j from F∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)
1. Calculate e = SHA-256(SHA-256(m))
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q ̸= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• As n is a 256-bit integer, signatures are 512 bits long
• As j is randomly chosen, ECDSA output is random for same m
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Transaction Malleability



Transaction ID

nVersion
Number of Inputs N
hash
n
scriptSigLen
scriptSig
nSequence

...
hash
n
scriptSigLen
scriptSig
nSequence
Number of Outputs M
nValue
scriptPubkeyLen
scriptPubkey

...
nValue
scriptPubkeyLen
scriptPubkey
nLockTime

Regular Transaction

Input 0

Input N − 1

Output 0

Output M − 1

Double
SHA-256

Hash
Tx ID
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Refund Protocol
• Alice wants to teach Bob about transactions
• Bob does not own any bitcoins
• Alice decides to transfer some bitcoins to Bob
• Alice does not trust Bob
• She wants to ensure refund
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Refund Protocol

Input unlocking
x bitcoins from
Alice’s UTXO

Output locked by
2-of-2 multisig

challenge script

Transaction t1
with TXID i1

Input with hash = i1 and
n = 0 unlocking the

2-of-2 multisig output in t1

Output returning
funds to Alice

Transaction t2

Input 0

Output 0

Input 0

Output 0

Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig 5. Broadcast t1

t1 confirmation

6. Broadcast t2

t2 confirmation
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Exploiting Transaction Malleability
Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig

5. Broadcast t1

5. Broadcast t1

6. Broadcast t ′1

t′1 confirmation

• If (r , s) is a valid ECDSA signature, so is (r ,n − s)
• The t ′1 transaction cannot be spent by t2
• SegWit = Segregated Witness

• Activated in August 2017
• Solves problems arising from transaction malleability
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