Bitcoin Transactions
Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 16, 2026

1/32

mailto:sarva@ee.iitb.ac.in

Bitcoin Transactions

Bitcoin Payment Workflow

1. Request Bob’s address

A
Q - D 2. Generate

4 3. Send Bob’s address address
4. Construct Alice \L Bob
t
5. Transmit
t 6. Query for t

Bitcoin network

® Merchant Bob shares address out of band (not using Bitcoin P2P)
® Customer Alice broadcasts transaction t which pays the address
® Miners collect broadcasted transactions into a candidate block

® One of the candidate blocks containing t is mined

® Merchant waits for confirmations on t before providing goods

3/32

Block Format

Coinbase Transaction Format

Coinbase Transaction

Block Header

Number of
Transactions n
Coinbase
Transaction

Amount x4
Challenge Script Cy

Regular
Transaction 1
Regular
Transaction 2

Amount x»
Challenge Script Co

Regular
Transaction n — 1

Output 0

Output 1

Output Format

nValue

scriptPubkeylLen

scriptPubkey

® nValue contains number of satoshis locked in output
¢ 1 Bitcoin = 108 satoshis

¢ scriptPubkey contains the challenge script
e scriptPubkeyLen contains byte length of challenge script

4/32

Regular Transaction Format

Input Format

Previous Regular Tx Regular Transaction

with Tx 1D = —
n
TxID=h o
scriptSigLen
One or more Output Index = 0 Input 0 ScriEtSig
inputs Response Script Ry nSequence
Amount x: TxID = h
Output 0 Challenge Scr;pt ¢ Output Index = 1 Input 1
Response Script R
Output 1 Amount X, TxID = |
Challenge Script C; x 1D =k
9 P o Output Index = 0 Input 2
Response Script Rs Output Format
Previous Coinbase Tx Amount nvalue
:)l iptPubkeyL
with Tx ID = b Challenge Script C; | (> CutPut 0 iiﬂﬁipﬂﬁkg en
Output 0 Amount x3 A ;
Challenge Script C; mount y2
9 Pt e Challenge Script Cs Output 1

® hash and n identify output being unlocked
e scriptSig contains the response script

5/32

Input 0

Input N — 1

Output 0

Output M — 1

i
{

Transaction ID

Regular Transaction

nVersion

Number of Inputs N

hash

n

scriptSigLen

scriptSig

nSequence

hash

n

scriptSigLen

scriptSig

nSequence

Number of Outputs M

nValue

scriptPubkeyLen

scriptPubkey

nValue

scriptPubkeyLen

scriptPubkey

nLockTime

\

Double
SHA-256
Hash

— TxID

6/32

Bitcoin Scripting Language

Script

¢ Forth-like stack-based language
e One-byte opcodes

Remaining Script Stack State

OP_2 OP_3 OP_ADD

OP_3 OP_ADD
3
2

OP_ADD

8/32

Challenge/Response Script Execution
Remaining Script Stack State

<Response Script> <Challenge Script>

X1
X2

<Challenge Script>

Xn

Y1
Y2

Ym

Response is valid if top element y; evaluates to True

9/32

Challenge Script Example

OP_HASH256 0x20 <256-bit string> OP_EQUAL
—_—————
S

Remaining Script Stack State

OP_HASH256 0x20 S OP_EQUAL X
0x20 S OP_EQUAL H(x)
S
OP_EQUAL Hix)
Oor1

Unsafe challenge script! Guess why?

10/32

Pay to Public Key

¢ Challenge script: 0x21 <Public Key> OP_CHECKSIG

* Response script: <Signature>

Remaining Script

Stack State

<Signature> <Public Key> OP_CHECKSIG

<Public Key> OP_CHECKSIG

<Signature>

<Public Key>

OP_CHECKSIG

<Signature>

True/False

11/32

Input 0

Input 1

Output 0

Output 1

Signatures Protect Transactions

Regular Transaction

nVersion

0x02

hash0

n0

scriptSigLen0

scriptSig0

nSequence0

hash1

ni

scriptSigLen1

scriptSig1

nSequence1

0x02

nValueO

scriptPubkeylLen0

scriptPubkey0

nValuel

scriptPubkeyLen1

scriptPubkey1

nLockTime

Message for
Input 0 signatures

nVersion

0x02

hash0

n0

prevScriptPubkeylLen0

prevScriptPubkey0

nSequence0

hash1

ni

0x00

nSequence1

0x02

nValueO

scriptPubkeyLen0

scriptPubkey0

nValuel

scriptPubkeylLen1

scriptPubkey1

nLockTime

nHashType

Input 0
Fields

Input 1
Fields

Output 0
Fields

Output 1
Fields

12/32

Transaction Merkle Root

Block Header nVersion
hashPrevBlock
Number of hashMerkleRoot
Transactions n nTime
Coinbase nBits
Transaction nNonce
Regular
Transaction 1
Regular
Transaction 2
Regular
Transaction n — 1

® hashMerkleRoot contains root hash of transaction Merkle tree
* Modifying any transaction will modify the block header

ho = H(hoo || hot) hy = H(hio || h1o)

’ hoo = H(to) ‘ ’ hor = H(tr) ‘ ’ Mo = H(t)

13/32

Key Takeaways

Coinbase transactions have no inputs; outputs have challenge
scripts

Regular transaction inputs unlock previous outputs; outputs
again have challenge scripts

Scripts are expressed in a stack-based language
Signatures prevent tampering of unconfirmed transactions

14/32

Bitcoin Addresses

Bitcoin Addresses

* To receive bitcoins, a challenge script needs to be specified
¢ Bitcoin addresses encode challenge scripts
e Example: 1TEHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

e Bitcoin payment workflow (recap)

® Merchant shares address out of band (not using Bitcoin P2P network)
® Customer transmits transaction which pays the address
® Merchant waits for transaction confirmations before providing goods/service

16/32

Base58 Encoding

1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

I
0091B24BF9F5288532960AC687ABB035127B1D28A50074FFEOQ

¢ Alphanumeric representation of bytestrings
* From 62 alphanumeric characters 0, O, I, | are excluded

Ch It|[Ch Int|Ch Int|Ch Int|Ch Int| Ch Int] Ch Int
T 0| A 9| K 18|U 27| d 36| n 45| w 54
2 1|B 10| L 19|V 28| e 37| 0 46| x 55
3 2|C 11|M 20w 29| f 38| p 47|y 56
4 3|D 12| N 21| X 30| g 39| q 48|z 57
5 4| E 13| P 22|Y 31| h 40| r 49
6 5| F 14| Q 23|z 32| i 41| s 50
7 6|G 15| R 24| a 33|) 42|t 51
8 7|H 16| S 25| b 34| k 43| u 52
9 8|J 17| T 26| c 3 |m 44| v 53

e Given a bytestring bpb,_1--- by

¢ Encode each leading zero byte as a 1

® Getinteger N = > 7" b;256'

® Getagax_1---a where N = YK 2,58
Map each integer a; to a Base58 character

17/32

Pay to Public Key Hash Address

Public Key

Double
SHA-256

—>| SHA-256
S

A

4
RIPEMD-160
R
4

A

Prefix address
version byte

B|R
Y

c

Y

A

Extract first
four bytes

Cy

B||RIICq

Base58
Encoding

— P2PKH Address

18/32

e Hashing the public key gives extra protection

P2PK
Address

P2PKH
Address

Why Hash the Public Key?

Point Addition

Private Key

—>

Solve

EcoLP [Private key

—>

Find
RIPEMD-160
preimage

Y

Find
SHA-256
preimage

Public Key

ECDLP

e ECDLP = Elliptic Curve Discrete Logarithm Problem
e ECDLP currently hard but no future guarantees

Y

Solve

EcDLP [Private key

19/32

P2PKH Transaction

e Challenge script

OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY

OP_CHECKSIG

Base58

P2PKH Address —] Decoding

BJ|R||C4
Y

Discard last

four bytes

BIR
Y

Discard address
version prefix byte

—R> PubKeyHash

* Response script: <Signhature> <Public Key>

20/32

P2PKH Script Execution (1/2)

Remaining Script

<Signature> <Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Stack State

<Signature>

<Public Key>

<Signature>

<Public Key>

<Public Key>

<Signature>

21/32

P2PKH Script Execution (2/2)

Remaining Script

<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

OP_EQUALVERIFY OP_CHECKSIG

OP_CHECKSIG

Stack State

<PubKeyHashCalc>

<Public Key>

<Signature>

<PubKeyHash>

<PubKeyHashCalc>

<Public Key>

<Signature>

<Public Key>

<Signature>

True/False

22/32

m-of-n Multi-Signature Scripts
° m-of-n multisig challenge script specifies n public keys
m <Public Key 1> --- <Public Key n> n OP_CHECKMULTISIG

® Response script provides signatures created using any m out of
the n private keys

OP_0 <Signature 1> --- <Signature m>.

e Example: m=2and n=3
® Challenge script

OP_2 <PubKey1> <PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

® Response script
OP_0 <Sig1> <Sig2>

23/32

2-0f-3 Multisig Script Execution

Remaining Script

OP_0 <Sig1> <Sig2> OP_2 <PubKey1>
<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

OP_2 <PubKey1>
<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

OP_CHECKMULTISIG

Stack State

<Sig2>

<Sig1>

<Empty Array>

3

<PubKey3>

<PubKey2>

<PubKey1>

2

<Sig2>

<Sig1>

<Empty Array>

True/False

24/32

Pay to Script Hash Script

Specify arbitrary scripts as payment destinations
Challenge script

OP_HASH160 <RedeemScriptHash> OP_EQUAL
Response script
<Response To Redeem Script> <Redeem Script>

Example
® 1-of-2 Multisig Challenge Script

OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG
® 1-of-2 Multisig Response Script
OP_0 <Sig1i> or OP_0 <Sig2>

® P2SH Multisig challenge script
OP_HASH160 <RedeemScriptHash> OP_EQUAL
® P2SH Multisig response script
OP_0 <Sigl> OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG

Response to Redeem Script
Redeem Script

25/32

P2SH Multisig Script Execution (1/2)

Remaining Script

OP_0 <Sig1>
<OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG>
OP_HASH160 <RedeemScriptHash> OP_EQUAL

<OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG>
OP_HASH160 <RedeemScriptHash> OP_EQUAL

OP_HASH160 <RedeemScriptHash> OP_EQUAL

<RedeemScriptHash> OP_EQUAL

OP_EQUAL

Stack State

<Sig1>

<Empty Array>

OP_1 <PubKey1> <PubKey2>
OP_2 OP_CHECKMULTISIG

<Sig1>

<Empty Array>

<RedeemScriptHashCalc>

<Sig1>

<Empty Array>

<RedeemScriptHash>

<RedeemScriptHashCalc>

<Sig1>

<Empty Array>

26/32

P2SH Multisig Script Execution (2/2)

Remaining Script Stack State

<Sig1>
OP_1 <PubKeyl1> <PubKey2> OP_2 OP_CHECKMULTISIG <Empty Array>

2
<PubKey2>
<PubKey1>
OP_CHECKMULTISIG .1

- <Sig1>
<Empty Array>

True/False

27/32

Pay to Script Hash Address

Redeem Script —>| SHA-256

Double
SHA-256

S
4
RIPEMD-160
R
/

A

A

Prefix address
version byte

BIR
A

c

Y

Extract first
four bytes

Cy

BI|RI|Ca

Base58

Encoding — P2SH Address

28/32

Null Data Script

Challenge script
OP_RETURN <Data>

Length(<pata>) < 80 bytes
OP_RETURN terminates script execution immediately

No valid response script exists

® Null data outputs are unspendable
® Any bitcoins locked by a null data challenge script are lost forever

Mainly used to timestamp data

29/32

Pre-SegWit Standard Scripts

Pay to Public Key (P2PK)

Pay to Public Key Hash (P2PKH)
m-of-n Multi-Signature (Multisig)
Pay to Script Hash (P2SH)

Null Data

30/32

Key Takeaways

Bitcoin addresses are shared over the Internet

Transactions paying these addresses are broadcast on the
Bitcoin network

P2PKH addresses are obtained by hashing public keys
Signatures created using private keys unlock P2PKH outputs
P2SH addresses are obtained by hashing scripts

Unlocking P2SH outputs requires both redeem script and valid
response to it

Null data scripts are for recording arbitrary data on the blockchain

31/32

References

e Chapter 5 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.litb.ac.in/~sarva/bitcoin.html

¢ Bitcoin Script https://en.bitcoin.it/wiki/Script

32/32

www.ee.iitb.ac.in/~sarva/bitcoin.html
https://en.bitcoin.it/wiki/Script

	Bitcoin Transactions
	Bitcoin Scripting Language
	Bitcoin Addresses

