
Bitcoin Transactions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 16, 2026

1 / 32

mailto:sarva@ee.iitb.ac.in


Bitcoin Transactions



Bitcoin Payment Workflow

Alice Bob

1. Request Bob’s address

2. Generate
address3. Send Bob’s address

4. Construct
t

Bitcoin network

6. Query for t
5. Transmit

t

• Merchant Bob shares address out of band (not using Bitcoin P2P)
• Customer Alice broadcasts transaction t which pays the address
• Miners collect broadcasted transactions into a candidate block
• One of the candidate blocks containing t is mined
• Merchant waits for confirmations on t before providing goods

3 / 32



Coinbase Transaction Format

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

Block Format

Amount x1
Challenge Script C1

Amount x2
Challenge Script C2

Coinbase Transaction

Output 0

Output 1

nValue
scriptPubkeyLen
scriptPubkey

Output Format

• nValue contains number of satoshis locked in output
• 1 Bitcoin = 108 satoshis

• scriptPubkey contains the challenge script
• scriptPubkeyLen contains byte length of challenge script

4 / 32



Regular Transaction Format

Tx ID = I1
Output Index = 0

Response Script R1

Tx ID = I1
Output Index = 1

Response Script R2

Tx ID = I2
Output Index = 0

Response Script R3

Amount y1
Challenge Script C4

Amount y2
Challenge Script C5

Regular Transaction

Input 0

Input 1

Input 2

Output 0

Output 1

One or more
inputs

Amount x1
Challenge Script C1

Amount x2
Challenge Script C2

Previous Regular Tx
with Tx ID = I1

Output 0

Output 1

Amount x3
Challenge Script C3

Previous Coinbase Tx
with Tx ID = I2

Output 0

hash
n
scriptSigLen
scriptSig
nSequence

nValue
scriptPubkeyLen
scriptPubkey

Input Format

Output Format

• hash and n identify output being unlocked
• scriptSig contains the response script

5 / 32



Transaction ID

nVersion
Number of Inputs N
hash
n
scriptSigLen
scriptSig
nSequence

...
hash
n
scriptSigLen
scriptSig
nSequence
Number of Outputs M
nValue
scriptPubkeyLen
scriptPubkey

...
nValue
scriptPubkeyLen
scriptPubkey
nLockTime

Regular Transaction

Input 0

Input N − 1

Output 0

Output M − 1

Double
SHA-256

Hash
Tx ID

6 / 32



Bitcoin Scripting Language



Script
• Forth-like stack-based language
• One-byte opcodes

OP_2 OP_3 OP_ADD

2
OP_3 OP_ADD

3
2OP_ADD

5

Stack StateRemaining Script

8 / 32



Challenge/Response Script Execution

<Response Script> <Challenge Script>

x1

x2
...

xn

<Challenge Script>

y1

y2
...

ym

Stack StateRemaining Script

Response is valid if top element y1 evaluates to True
9 / 32



Challenge Script Example
OP_HASH256 0x20 <256-bit string>︸ ︷︷ ︸

S

OP_EQUAL

x
OP_HASH256 0x20 S OP_EQUAL

H(x)
0x20 S OP_EQUAL

S
H(x)OP_EQUAL

0 or 1

Stack StateRemaining Script

Unsafe challenge script! Guess why?
10 / 32



Pay to Public Key
• Challenge script: 0x21 <Public Key> OP_CHECKSIG
• Response script: <Signature>

<Signature> <Public Key> OP_CHECKSIG

<Signature><Public Key> OP_CHECKSIG

<Public Key>
<Signature>OP_CHECKSIG

True/False

Stack StateRemaining Script

11 / 32



Signatures Protect Transactions

nVersion
0x02
hash0
n0
scriptSigLen0
scriptSig0
nSequence0
hash1
n1
scriptSigLen1
scriptSig1
nSequence1
0x02
nValue0
scriptPubkeyLen0
scriptPubkey0
nValue1
scriptPubkeyLen1
scriptPubkey1
nLockTime

nVersion
0x02
hash0
n0
prevScriptPubkeyLen0
prevScriptPubkey0
nSequence0
hash1
n1
0x00
nSequence1
0x02
nValue0
scriptPubkeyLen0
scriptPubkey0
nValue1
scriptPubkeyLen1
scriptPubkey1
nLockTime
nHashType

Regular Transaction
Message for

Input 0 signatures

Input 0

Input 1

Output 0

Output 1

Input 0
Fields

Input 1
Fields

Output 0
Fields

Output 1
Fields

12 / 32



Transaction Merkle Root

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

• hashMerkleRoot contains root hash of transaction Merkle tree
• Modifying any transaction will modify the block header

h = H(h0 ∥ h1)

h0 = H(h00 ∥ h01)

h00 = H(t0)

t0

h01 = H(t1)

t1

h1 = H(h10 ∥ h10)

h10 = H(t2)

t2

h10

13 / 32



Key Takeaways
• Coinbase transactions have no inputs; outputs have challenge

scripts
• Regular transaction inputs unlock previous outputs; outputs

again have challenge scripts
• Scripts are expressed in a stack-based language
• Signatures prevent tampering of unconfirmed transactions

14 / 32



Bitcoin Addresses



Bitcoin Addresses
• To receive bitcoins, a challenge script needs to be specified
• Bitcoin addresses encode challenge scripts
• Example: 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

• Bitcoin payment workflow (recap)
• Merchant shares address out of band (not using Bitcoin P2P network)
• Customer transmits transaction which pays the address
• Merchant waits for transaction confirmations before providing goods/service

16 / 32



Base58 Encoding

1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm
↕

0091B24BF9F5288532960AC687ABB035127B1D28A50074FFE0

• Alphanumeric representation of bytestrings
• From 62 alphanumeric characters 0, O, I, l are excluded

Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int
1 0 A 9 K 18 U 27 d 36 n 45 w 54
2 1 B 10 L 19 V 28 e 37 o 46 x 55
3 2 C 11 M 20 W 29 f 38 p 47 y 56
4 3 D 12 N 21 X 30 g 39 q 48 z 57
5 4 E 13 P 22 Y 31 h 40 r 49
6 5 F 14 Q 23 Z 32 i 41 s 50
7 6 G 15 R 24 a 33 j 42 t 51
8 7 H 16 S 25 b 34 k 43 u 52
9 8 J 17 T 26 c 35 m 44 v 53

• Given a bytestring bnbn−1 · · · b0
• Encode each leading zero byte as a 1
• Get integer N =

∑n−m
i=0 bi 256i

• Get ak ak−1 · · · a0 where N =
∑k

i=0 ai 58i

• Map each integer ai to a Base58 character
17 / 32



Pay to Public Key Hash Address
Public Key SHA-256

RIPEMD-160

Prefix address
version byte

Double
SHA-256

Extract first
four bytes

∥

Base58
Encoding P2PKH Address

S

R

B∥R

C

C4

B∥R∥C4

18 / 32



Why Hash the Public Key?

Private Key Public Key

Point Addition

ECDLP

• ECDLP = Elliptic Curve Discrete Logarithm Problem
• ECDLP currently hard but no future guarantees
• Hashing the public key gives extra protection

Solve
ECDLP

P2PK
Address Private key

P2PKH
Address

Find
RIPEMD-160

preimage

Find
SHA-256
preimage

Solve
ECDLP Private key

19 / 32



P2PKH Transaction
• Challenge script

OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

P2PKH Address
Base58

Decoding

Discard last
four bytes

Discard address
version prefix byte PubKeyHash

B∥R∥C4

B∥R

R

• Response script: <Signature> <Public Key>

20 / 32



P2PKH Script Execution (1/2)

<Signature> <Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Signature><Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Signature>OP_DUP OP_HASH160

<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Public Key>
<Signature>

OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Stack StateRemaining Script

21 / 32



P2PKH Script Execution (2/2)

<PubKeyHashCalc>
<Public Key>
<Signature><PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<PubKeyHash>
<PubKeyHashCalc>

<Public Key>
<Signature>

OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Signature>OP_CHECKSIG

True/False

Stack StateRemaining Script

22 / 32



m-of-n Multi-Signature Scripts
• m-of-n multisig challenge script specifies n public keys

m <Public Key 1> · · · <Public Key n> n OP_CHECKMULTISIG

• Response script provides signatures created using any m out of
the n private keys

OP_0 <Signature 1> · · · <Signature m>.

• Example: m = 2 and n = 3
• Challenge script

OP_2 <PubKey1> <PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

• Response script
OP_0 <Sig1> <Sig2>

23 / 32



2-of-3 Multisig Script Execution

OP_0 <Sig1> <Sig2> OP_2 <PubKey1>
<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

<Sig2>
<Sig1>

<Empty Array>
OP_2 <PubKey1>

<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

3
<PubKey3>
<PubKey2>
<PubKey1>

2
<Sig2>
<Sig1>

<Empty Array>

OP_CHECKMULTISIG

True/False

Stack StateRemaining Script

24 / 32



Pay to Script Hash Script
• Specify arbitrary scripts as payment destinations
• Challenge script

OP_HASH160 <RedeemScriptHash> OP_EQUAL

• Response script

<Response To Redeem Script> <Redeem Script>

• Example
• 1-of-2 Multisig Challenge Script

OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG
• 1-of-2 Multisig Response Script

OP_0 <Sig1> or OP_0 <Sig2>

• P2SH Multisig challenge script

OP_HASH160 <RedeemScriptHash> OP_EQUAL
• P2SH Multisig response script

OP_0 <Sig1>︸ ︷︷ ︸
Response to

Redeem Script

OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG︸ ︷︷ ︸
Redeem Script

25 / 32



P2SH Multisig Script Execution (1/2)

OP_0 <Sig1>
<OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG>

OP_HASH160 <RedeemScriptHash> OP_EQUAL

<Sig1>
<Empty Array><OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG>

OP_HASH160 <RedeemScriptHash> OP_EQUAL

OP_1 <PubKey1> <PubKey2>
OP_2 OP_CHECKMULTISIG

<Sig1>
<Empty Array>OP_HASH160 <RedeemScriptHash> OP_EQUAL

<RedeemScriptHashCalc>
<Sig1>

<Empty Array><RedeemScriptHash> OP_EQUAL

<RedeemScriptHash>
<RedeemScriptHashCalc>

<Sig1>
<Empty Array>OP_EQUAL

Stack StateRemaining Script

26 / 32



P2SH Multisig Script Execution (2/2)

<Sig1>
<Empty Array>OP_1 <PubKey1> <PubKey2> OP_2 OP_CHECKMULTISIG

2
<PubKey2>
<PubKey1>

1
<Sig1>

<Empty Array>

OP_CHECKMULTISIG

True/False

Stack StateRemaining Script

27 / 32



Pay to Script Hash Address
Redeem Script SHA-256

RIPEMD-160

Prefix address
version byte

Double
SHA-256

Extract first
four bytes

∥

Base58
Encoding P2SH Address

S

R

B∥R

C

C4

B∥R∥C4

28 / 32



Null Data Script
• Challenge script

OP_RETURN <Data>

Length(<Data>) ≤ 80 bytes
• OP_RETURN terminates script execution immediately
• No valid response script exists

• Null data outputs are unspendable
• Any bitcoins locked by a null data challenge script are lost forever

• Mainly used to timestamp data

29 / 32



Pre-SegWit Standard Scripts
• Pay to Public Key (P2PK)
• Pay to Public Key Hash (P2PKH)
• m-of-n Multi-Signature (Multisig)
• Pay to Script Hash (P2SH)
• Null Data

30 / 32



Key Takeaways
• Bitcoin addresses are shared over the Internet
• Transactions paying these addresses are broadcast on the

Bitcoin network
• P2PKH addresses are obtained by hashing public keys
• Signatures created using private keys unlock P2PKH outputs
• P2SH addresses are obtained by hashing scripts
• Unlocking P2SH outputs requires both redeem script and valid

response to it
• Null data scripts are for recording arbitrary data on the blockchain

31 / 32



References
• Chapter 5 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

• Bitcoin Script https://en.bitcoin.it/wiki/Script

32 / 32

www.ee.iitb.ac.in/~sarva/bitcoin.html
https://en.bitcoin.it/wiki/Script

	Bitcoin Transactions
	Bitcoin Scripting Language
	Bitcoin Addresses

