

Group Theory

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 21, 2026

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation \star is closed,
- the operation \star is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a,$$

- for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e.$$

Example

- Modulo n addition on $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$

Definition

A group is abelian if for all $a, b \in G$, we have $a \star b = b \star a$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group G is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g * g, g * g * g, \dots\}$$

for some particular element $g \in G$, which is called a generator of G .

Examples

- For an integer $n \geq 1$, $\mathbb{Z}_n = \{0, 1, 2, \dots, n - 1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1
- For an integer $n \geq 2$, $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \setminus \{0\} \mid \gcd(i, n) = 1\}$
 - Operation is multiplication modulo n
 - \mathbb{Z}_n^* is cyclic if n is a prime

Subgroups

- **Definition:** If G is a group, a nonempty subset $H \subseteq G$ is a *subgroup* of G if H itself forms a group under the same operation associated with G .
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$.
- **Lagrange's Theorem:** If H is a subgroup of a finite group G , then $|H|$ divides $|G|$.
- Example: Check the cardinalities of the subgroups of \mathbb{Z}_6 .
- **Corollary:** If a group has prime order, then every non-identity element is a generator.

Fields

Definition

A set F together with two binary operations $+$ and $*$ is a field if

- F is an abelian group under $+$ whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under $*$ whose identity is called 1
- For any $a, b, c \in F$

$$a * (b + c) = a * b + a * c$$

Definition

A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \bmod p,$$
$$x * y = xy \bmod p.$$

- \mathbb{F}_5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- In fields, division is multiplication by multiplicative inverse

$$\frac{x}{y} = x * y^{-1}$$

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1 + 1 + \cdots + 1 + 1}_{p \text{ times}} = 0$$

Examples

- \mathbb{F}_2 has characteristic 2
- \mathbb{F}_5 has characteristic 5
- \mathbb{R} has characteristic 0

Theorem

The characteristic of a finite field is prime

References

- Sections 9.1, 9.3 of *Introduction to Modern Cryptography*, J. Katz, Y. Lindell, 3rd edition
- Chapter 2 of *An Introduction to Bitcoin*, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html