
Cryptographic Hash Functions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 7, 2026

1 / 12

mailto:sarva@ee.iitb.ac.in


Cryptographic Hash Functions
• Important building block in cryptography
• Input: Variable length bitstrings
• Output: Fixed length bitstrings

• For example, output length can be 256 bits
• Preimage resistant: Easy to compute but difficult to invert

• Given H(x), computationally infeasible to find x
• Collision resistant

• Computationally infeasible to find x ̸= y with H(x) = H(y)
• Applications

• Password hashing
• Digital signatures on arbitrary length data
• Commitment schemes

2 / 12



Cryptographic Hash Functions
• Collisions always exist as domain is larger than co-domain, but

are hard to identify
• Having a large co-domain is necessary

y3 y1 · · · y2

Bin 0 Bin 1 Bin 2 Bin 2256 − 2 Bin 2256 − 1

SHA-256
Messages

x1, x2, x3, . . .

3 / 12



SHA-256
• SHA = Secure Hash Algorithm, 256-bit output length
• Accepts bit strings of length upto 264 − 1
• Announced in 2001 by NIST, US Department of Commerce
• Output calculation has two stages

• Preprocessing
• Hash Computation

• Preprocessing
1. The input M is padded to a length which is a multiple of 512
2. A 256-bit state variable H(0) is set to

H(0)
0 = 0x6A09E667, H(0)

1 = 0xBB67AE85,

H(0)
2 = 0x3C6EF372, H(0)

3 = 0xA54FF53A,

H(0)
4 = 0x510E527F, H(0)

5 = 0x9B05688C,

H(0)
6 = 0x1F83D9AB, H(0)

7 = 0x5BE0CD19.

4 / 12



SHA-256 Input Padding
• Let input M be l bits long

• Find smallest non-negative k such that

k + l + 65 = 0 mod 512

• Append k + 1 bits consisting of single 1 and k zeros
• Append 64-bit representation of l

• Example: M = 101010 with l = 6
• k = 441
• 64-bit representation of 6 is 000 · · · 00110
• 512-bit padded message

101010︸ ︷︷ ︸
M

1 00000 · · · 00000︸ ︷︷ ︸
441 zeros

00 · · · 00110︸ ︷︷ ︸
l

.

5 / 12



SHA-256 Hash Computation
1. Padded input is split into N 512-bit blocks M(1),M(2), . . . ,M(N)

2. Given H(i−1), the next H(i) is calculated using a function f

H(i) = f (M(i),H(i−1)), 1 ≤ i ≤ N.

H(i−1) f

M(i)

H(i)· · · · · ·H(1)fH(0)

M(1)

H(N−1) f H(N)

M(N)

3. f is called a compression function
4. H(N) is the output of SHA-256 for input M

6 / 12



SHA-256 Compression Function Building Blocks
• U, V , W are 32-bit words
• U ∧ V ,U ∨ V , U ⊕ V denote bitwise AND, OR, XOR
• U + V denotes integer sum modulo 232

• ¬U denotes bitwise complement
• For 1 ≤ n ≤ 32, the shift right and rotate right operations

SHRn(U) = 000 · · · 000︸ ︷︷ ︸
n zeros

u0u1 · · · u30−nu31−n,

ROTRn(U) = u31−n+1u31−n+2 · · · u30u31u0u1 · · · u30−nu31−n,

• Bitwise choice and majority functions

Ch(U,V ,W ) = (U ∧ V )⊕ (¬U ∧ W ),

Maj(U,V ,W ) = (U ∧ V )⊕ (U ∧ W )⊕ (V ∧ W ),

• Let

Σ0(U) = ROTR2(U)⊕ ROTR13(U)⊕ ROTR22(U)

Σ1(U) = ROTR6(U)⊕ ROTR11(U)⊕ ROTR25(U)

σ0(U) = ROTR7(U)⊕ ROTR18(U)⊕ SHR3(U)

σ1(U) = ROTR17(U)⊕ ROTR19(U)⊕ SHR10(U)

7 / 12



SHA-256 Compression Function Calculation
• Maintains internal state of 64 32-bit words {Wj | j = 0, 1, . . . , 63}
• Also uses 64 constant 32-bit words K0,K1, . . . ,K63 derived from the first 64 prime

numbers 2, 3, 5, . . . , 307, 311

• f (M(i),H(i−1)) proceeds as follows

1. Internal state initialization

Wj =

{
M(i)

j 0 ≤ j ≤ 15,
σ1(Wj−2) + Wj−7 + σ0(Wj−15) + Wj−16 16 ≤ j ≤ 63.

2. Initialize eight 32-bit words

(A,B,C,D,E ,F ,G,H) =
(

H(i−1)
0 ,H(i−1)

1 , . . . ,H(i−1)
6 ,H(i−1)

7

)
.

3. For j = 0, 1, . . . , 63, iteratively update A,B, . . . ,H

T1 = H +Σ1(E) + Ch(E ,F ,G) + Kj + Wj

T2 = Σ0(A) + Maj(A,B,C)

(A,B,C,D,E ,F ,G,H) = (T1 + T2,A,B,C,D + T1,E ,F ,G)

4. Calculate H(i) from H(i−1)

(H(i)
0 ,H(i)

1 , . . . ,H(i)
7 ) =

(
A + H(i−1)

0 ,B + H(i−1)
1 , . . . ,H + H(i−1)

7

)
.

8 / 12



Birthday Attacks for Finding Collisions
• Birthday Problem: Given Q people, what is the probability of two

of them having the same birthday?
• Suppose the size of Y is M. For SHA-256, M = 2256.
• If we calculate H for Q inputs, the probability of a collision is

1 −
(

1 − 1
M

)(
1 − 2

M

)
· · ·

(
1 − Q − 1

M

)
≈ 1 − exp

−Q(Q − 1)
2M

• For success probability ε, the number of “queries” is

Q ≈
√

2M ln
1

1 − ε

• For ε = 0.5, Q ≈ 1.17
√

M
• For SHA-256, Q ≈ 2128

9 / 12



Applications of Hash Functions
• Password hashing
• Digital signatures on arbitrary length data
• Virus fingerprinting
• Commitment schemes

• A kind of digital envelope
• Allows one party to “commit” to a message m by sending a

commitment c to the counterparty
• Set c = H(m∥r) where r is a random n-bit string
• Hiding: c reveals nothing about m
• Binding: Infeasible for c to be opened to a different message m′

10 / 12



Merkle Trees
• Suppose a client uploads multiple files to server
• Client wants to ensure file integrity at a later retrieval

h = H(h0 ∥ h1)

h0 = H(h00 ∥ h01)

h00 = H(f0)

f0

h01 = H(f1)

f1

h1 = H(h10 ∥ h11)

h10 = H(f2)

f2

h11 = H(f3)

f3

• For N files, O(logN) communication from server ensures
integrity

• The communication is called a Merkle proof

11 / 12



References
• Chapter 6 of Introduction to Modern Cryptography, J. Katz,

Y. Lindell, 3rd edition
• Chapter 3 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

12 / 12

www.ee.iitb.ac.in/~sarva/bitcoin.html

