Cryptographic Hash Functions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 7, 2026

1/12

mailto:sarva@ee.iitb.ac.in

Cryptographic Hash Functions

Important building block in cryptography
Input: Variable length bitstrings
Output: Fixed length bitstrings
® For example, output length can be 256 bits
Preimage resistant: Easy to compute but difficult to invert
® Given H(x), computationally infeasible to find x
Collision resistant
® Computationally infeasible to find x # y with H(x) = H(y)
Applications

® Password hashing
® Digital signatures on arbitrary length data
® Commitment schemes

2/12

¢ Collisions always exist as domain is larger than co-domain, but

Cryptographic Hash Functions

are hard to identify

e Having a large co-domain is necessary

Messages
X{, X2, X3, . ..

—>

SHA-256

Bin 0

Bin 1

Bin 2

Bin 22% — 2

Bin 2256 _

3/12

SHA-256

SHA = Secure Hash Algorithm, 256-bit output length
Accepts bit strings of length upto 264 — 1

Announced in 2001 by NIST, US Department of Commerce

Output calculation has two stages

® Preprocessing
® Hash Computation

Preprocessing

1. The input M is padded to a length which is a multiple of 512

2. A 256-bit state variable H® is set to

H® = 0x6A09E667,
H® = 0x3c6EF372,
H® = 0x510E527F,
H® = 0x1F83D9aB,

H® — 0xBB67AESS,
H®) — 0xA54FF53a,
H® = ox9BOS5688C,
H® = 0x5BEOCD19.

4/12

SHA-256 Input Padding

e |etinput M be / bits long
® Find smallest non-negative k such that

k + 1465 =0 mod 512

® Append k + 1 bits consisting of single 1 and k zeros
® Append 64-bit representation of /
e Example: M =101010 with /=6
® k=441
® 64-bit representation of 6 is 000--- 00110
® 512-bit padded message

101010 1 00000 ---00000 00---00110.
——

M 441 zeros !

5/12

SHA-256 Hash Computation

1. Padded input is split into N 512-bit blocks M("), M) ... M)
2. Given HU=1 | the next H() is calculated using a function f

HD = (MDD HI=DY 1 <i<N.

H©O) H) — - — H(i-1) H) —= -+ — H(N-1) HWN)

M M) MN)

3. fis called a compression function
4. HW) is the output of SHA-256 for input M

6/12

SHA-256 Compression Function Building Blocks

° U, V, W are 32-bit words

e UAV,UV V,U®& V denote bitwise AND, OR, XOR

e U+ V denotes integer sum modulo 232

® U denotes bitwise complement

® For 1 < n < 32, the shift right and rotate right operations

SHR"(U) = 000 - -000 uUpuy - - - Uzg_nlsq_p,
7 2605
ROTR"(U) = Us1—_n41Us1—ny2 - - - UsoUs1 ol - - - Uso—nlU31—n,
® Bitwise choice and majority functions
Ch(U, V, W) = (UA V)& (~UA W),
Maj(U, V, W) = (UA V) ® (UA W)@ (VA W),
® |et
(U) = ROTR?(U) @ ROTR'™3(U) & ROTR?3(U)
¥4 (U) = ROTR®(U) @ ROTR'"(U) @ ROTR? (V)
(U) = ROTR’(U) ® ROTR'8(U) @ SHR3(U)
(U) = ROTR'(U) & ROTR'®(U) @ SHR'(U)

7/12

SHA-256 Compression Function Calculation

® Maintains internal state of 64 32-bit words {W; | j =0,1,...,63}

® Also uses 64 constant 32-bit words Ky, K1, . . . , Kg3 derived from the first 64 prime
numbers 2,3,5,...,307,311

o (M), Hi=1)) proceeds as follows
1. Internal state initialization

M0 0<j<15,
P o1 (W2) + W7 + oo(Wj15) + W16 16 <j < 63.

2. Initialize eight 32-bit words
(A,B,C,D,E,F,G,H) = (Héi’1),H1(i’1), o HETY, H§’*”) .
3. Forj=0,1,...,63, iteratively update A, B, ..., H
Ty = H+$4(E) + Ch(E,F,G) + K; + W,

T2 = Xo(A) + Maj(A, B, C)
(’47 E;, (;, [)7 £;7 f:7 (31 f{) = (7} + 7é 7'4) Eg: C;) D+ 7} 5 £;7 f:7 (3)

4. Calculate H() from H(=1)
(H HD L HEDy = (A +HEY B HOIEY L H H§"‘”) .

8/12

Birthday Attacks for Finding Collisions

Birthday Problem: Given Q people, what is the probability of two
of them having the same birthday?

Suppose the size of) is M. For SHA-256, M = 2256,
If we calculate H for Q inputs, the probability of a collision is

1<1 /://) (1/\24)(1 01\/11) mfexp;o(zcn’[”

For success probability ¢, the number of “queries” is

Q=~/2MIn

1—¢

Fore =0.5 Q~1.17VM
For SHA-256, Q ~ 2'28

9/12

Applications of Hash Functions

Password hashing
Digital signatures on arbitrary length data
Virus fingerprinting
Commitment schemes
® A kind of digital envelope
® Allows one party to “commit” to a message m by sending a
commitment ¢ to the counterparty
® Set ¢ = H(m||r) where r is a random n-bit string
® Hiding: c reveals nothing about m
* Binding: Infeasible for ¢ to be opened to a different message m’

10/12

Merkle Trees

e Suppose a client uploads multiple files to server
e Client wants to ensure file integrity at a later retrieval

ho = H(hoo || ho1) hy = H(ho || h11)

[ro=tt) | [ri=H®)] [mo=HE)| | A=t |

e For N files, O(log N) communication from server ensures
integrity
® The communication is called a Merkle proof

11/12

References

e Chapter 6 of Introduction to Modern Cryptography, J. Katz,
Y. Lindell, 3rd edition

e Chapter 3 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.litb.ac.in/~sarva/bitcoin.html

12/12

www.ee.iitb.ac.in/~sarva/bitcoin.html

