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Solution to Assignment 3

1. Let g(X) be the generator polynomial of a binary cyclic code of length n.

(a) Show that if g(X) has X +1 as a factor, the code contains no codewords of odd
weight.

Solution: Since every code polynomial in a cyclic code is a multiple of the
generator polynomial g(X), every code polynomial has X + 1 as a factor. This
implies that c(1) = 0 for a code polynomial c(X) which in turn requires c(X) to
have an even number of terms. So every codeword is of even weight.

(b) If n is odd and X + 1 is not a factor of g(X), show that the code contains a
codeword consisting of all ones.

Solution: The oddness of n is in fact not required for the existence of a codeword
consisting of all ones. We know that the generator polynomial g(X) divides
Xn + 1. We have

a(X)g(X) = Xn + 1 = (X + 1)(Xn−1 +Xn−2 + · · ·+X + 1). (1)

Since X + 1 appears on the right hand side and is not a factor of g(X), it has
to be a factor of a(X). Let a(X) = (X + 1)b(X). This implies

b(X)g(X) = Xn−1 +Xn−2 + · · ·+X + 1. (2)

So g(X) divides Xn−1 +Xn−2 + · · ·+X + 1 and hence the all ones codeword is
contained in this code.

(c) Show that the code has a minimum weight of at least 3 if n is the smallest integer
such that g(X) divides Xn + 1.

Solution: For this question to be well defined n has to be at least 3. In the
minimum weight calculation of a code, we consider only nonzero codewords. So
it is enough to show that weight one and weight two codewords do not exist.

If a weight one codeword exists, its corresponding code polynomial will be of
the form X i for 0 ≤ i ≤ n− 1 which has to be divisible by g(X). The generator
polynomial of a cyclic code has a nonzero constant term. We have g(X) 6= 1
because otherwise g(X) would divide X + 1 which is not equal to Xn + 1 for
n ≥ 3. So g(X) has at least two terms which implies that any polynomial
multiple of g(X) has at least two terms. Thus X i cannot be a multiple of g(X).
In fact, X i and g(X) have no factors in common because if they do the common
factor will have to be of the form Xj for 1 ≤ j ≤ i. Such a factor has zero as a
root but zero is not a root of g(X) because it has a nonzero constant term.



If a weight two codeword exists, its corresponding code polynomial will be of
the form X i +Xj for 0 ≤ i < j ≤ n − 1 which has to be divisible by g(X). So
Xj(X i−j + 1) has to be divisible by g(X). Since g(X) and Xj have no factors
in common, X i−j + 1 has to be divisible by g(X) but this is not possible since
i− j ≤ n− 1.

Since no weight one or two codewords exist, the minimum weight is at least
three.

2. (a) For a cyclic code, if an error pattern e(X) is detectable, show that its ith cyclic
shift e(i)(X) is also detectable.

Solution: If an error pattern e(X) is detectable, e(X) 6= 0 mod g(X). The ith
cyclic shift e(i)(X) is equal to X ie(X) mod Xn + 1 where n is the blocklength
of the cyclic code. Let a(X) be the quotient when X ie(X) is divided by Xn+1.
Then X ie(X) = a(X)(Xn + 1) + e(i)(X) which implies e(i)(X) = X ie(X) +
a(X)(Xn + 1). If we divide both sides by g(X), we get

e(i)(X) mod g(X) = X ie(X) mod g(X) + a(X)(Xn + 1) mod g(X)

= X ie(X) mod g(X)

where the second equality is obtained by the fact that g(X) divides Xn+1. The
error pattern e(i)(X) is undetectable if and only if e(i)(X) mod g(X) is equal
to zero which happens if and only if X ie(X) mod g(X) is equal to zero. Since
g(X) and X i have no factors in common (see solution to question 1(c)), g(X)
would need to divide e(X). But this is not possible as e(X) mod g(X) is not
equal to zero.

(b) Let v(X) be a code polynomial in a cyclic code of length n. Let i be the smallest
integer such that v(i)(X) = v(X). Show that if i 6= 0, i is a factor of n.

Solution: Since n cyclic shifts of a codeword of length n returns the codeword
to the initial state, v(n)(X) = v(X). If i is not a factor of n, divide n by i to get
a quotient q and remainder r (0 ≤ r < i), n = qi+ r. We get

v(X) = v(n)(X) = v(qi+r)(X) = v(i+[q−1]i+r)(X) = v([q−1]i+r)(X) = · · · = v(r)(X)

Since i is the smallest integer such that v(X) = v(i)(X) and 0 ≤ r < i, we must
have r = 0. Thus i divides n.

3. Consider a binary (n, k) cyclic code C generated by g(X). Let g∗(X) = Xn−kg(X−1)
be the reciprocal polynomial of g(X).

(a) Show that g∗(X) also generates an (n, k) cyclic code.

Solution: Since any polynomial which divides Xn+1 generates an (n, k) cyclic
code, we need to prove that g∗(X) divides Xn+1. Since g(X) generates an (n, k)
cyclic code it has degree n− k and it divides Xn + 1. Let g(X)h(X) = Xn + 1
where the degree of h(X) is k. We get

g(X−1)h(X−1) = X−n + 1

⇒ Xng(X−1)h(X−1) = Xn(X−n + 1) = 1 +Xn

⇒ Xn−kg(X−1)Xkh(X−1) = 1 +Xn.
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Both Xn−kg(X−1) and Xkh(X−1) are polynomials in X since g(X) has degree
n− k and h(X) has degree k. From the above expression, we see that g∗(X) =
Xn−kg(X−1) divides Xn + 1 and as a consequence it generates an (n, k) cyclic
code.

(b) Let C∗ be the cyclic code generated by g∗(X). Show that C and C∗ have
the same weight distribution. (Hint: If v(X) is a code polynomial in C, then
Xn−1v(X−1) is a code polynomial in C∗).

Solution: Any codeword in C corresponds to a code polynomial v(X) =
u(X)g(X) where the degree of u(X) is at most k − 1. The number of terms
in v(X) corresponds to the weight of the corresponding codeword. The polyno-
mial Xn−1v(X−1) has the same number of terms as v(X) albeit in reverse order.
We will show that for every code polynomial in C there is a code polynomial in
C∗ with the same number of terms. This will in turn prove that for every code-
word in C there is an equal weight codeword in C∗. So the weight distributions
of these two codes will have to be the same. We have

v(X) = u(X)g(X)

Xn−1v(X−1) = Xn−1u(X−1)g(X−1)

Xn−1v(X−1) = Xk−1u(X−1)Xn−kg(X−1)

Xn−1v(X−1) = Xk−1u(X−1)g∗(X)

Since the degree of u(X) is at most k − 1, Xk−1u(X−1) is a polynomial. Thus
Xn−1v(X−1) is a polynomial multiple of g∗(X). It is thus a code polynomial in
C∗. So for every code polynomial in C there is a code polynomial in C∗.

4. Draw the Meggitt decoder circuit for the (7, 3) binary cyclic code generated by g(X) =
(X + 1)(X3 +X + 1)

Solution: For the Meggitt decoder, we need to identify all correctable error patterns
which have a one in the last location, i.e. the corresponding polynomial representation
has the term X6. For this code n = 7 and k = 3, so there are 2n−k = 24 = 16
correctable error patterns. These can be found by constructing the standard array.
First we calculate the eight codewords and find that the minimum weight of the
nonzero codewords is four. So if we take weight one coset leaders the cosets will
contain vectors of weight at least three. So after we choose all weight one vectors as
coset leaders we are free to choose any weight two vector as a coset leader for the
ninth coset because it has not appeared so far in the standard array. But we choose
those weight two vectors as coset leaders which have a one in the last location so that
the Megitt decoder can immediately correct it. When weight two vectors are chosen
as coset leaders other weight two vectors can appear in the coset and hence care must
be taken to make sure that they are not chosen as coset leaders for the subsequent
cosets. There are

(

7
2

)

= 21 weight two vectors of length 7 and they all appear within
the first 15 cosets. For the last coset, the coset leader has to be of weight three and
we choose it to be 0100011 because it has a one in the last location. We could also
have chosen 0001101 or 1010001.

Once we have constructed the standard array, we see that the coset leaders of cosets
2, 9, 10, 11, 12, 13, 14 and 16 have a one in the last location i.e. their corresponding
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1 0000000 1011100 0101110 0010111 1110010 1001011 0111001 1100101
2 0000001 1011101 0101111 0010110 1110011 1001010 0111000 1100100
3 0000010 1011110 0101100 0010101 1110000 1001001 0111011 1100111
4 0000100 1011000 0101010 0010011 1110110 1001111 0111101 1100001
5 0001000 1010100 0100110 0011111 1111010 1000011 0110001 1101101
6 0010000 1001100 0111110 0000111 1100010 1011011 0101001 1110101
7 0100000 1111100 0001110 0110111 1010010 1101011 0011001 1000101
8 1000000 0011100 1101110 1010111 0110010 0001011 1111001 0100101
9 0000011 1011111 0101101 0010100 1110001 1001000 0111010 1100110
10 0000101 1011001 0101011 0010010 1110111 1001110 0111100 1100000
11 0001001 1010101 0100111 0011110 1111011 1000010 0110000 1101100
12 0010001 1001101 0111111 0000110 1100011 1011010 0101000 1110100
13 0100001 1111101 0001111 0110110 1010011 1101010 0011000 1000100
14 1000001 0011101 1101111 1010110 0110011 0001010 1111000 0100100
15 0100010 1111110 0001100 0110101 1010000 1101001 0011011 1000111
16 0100011 1111111 0001101 0110100 1010001 1101000 0011010 1000110

polynomials have a X6 term. So the error pattern detection circuit of the Megitt
decoder should output a one when the syndromes corresponding to these coset leaders
appears in the syndrome register. The truth table of the error pattern detection circuit
is given in the last two columns of the following table. If the syndrome is represented
as the bit string abcd, using Karnaugh map minimization we get the error pattern
detection circuit to be equal to bd+ (b+ c)(ac̄ + āc).
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Coset leader Syndrome Syndrome (binary)
1 0 0 0000 0
2 X6 X3 +X2 +X 0111 1
3 X5 X2 +X + 1 1110 0
4 X4 X3 +X2 + 1 1011 0
5 X3 X3 0001 0
6 X2 X2 0010 0
7 X X 0100 0
8 1 1 1000 0
9 X6 +X5 X3 + 1 1001 1
10 X6 +X4 X + 1 1100 1
11 X6 +X3 X2 +X 0110 1
12 X6 +X2 X3 +X 0101 1
13 X6 +X X3 +X2 0011 1
14 X6 + 1 X3 +X2 +X + 1 1111 1
15 X5 +X X2 + 1 1010 0
16 X6 +X5 +X X3 +X + 1 1101 1
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