1. (5 points) Consider the set $F = \{a_0 + a_1 X | a_0, a_1 \in \mathbb{F}_2\}$ of polynomials of degree at most 1 with coefficients in \mathbb{F}_2 . For two polynomials $a(X) = a_0 + a_1 X$ and $b(X) = b_0 + b_1 X$ in Fdefine the addition operator \oplus as

$$a(X) \oplus b(X) = a_0 + b_0 + (a_1 + b_1)X.$$

The addition operator \oplus is just regular polynomial addition. Define the multiplication operator \otimes as

$$a(X) \otimes b(X) = [a_0b_0 + (a_0b_1 + a_1b_0)X + a_1b_1X^2] \mod (1 + X + X^2).$$

The multiplication operator gives the remainder when a(X)b(X) is divided by $1 + X + X^2$. Show that F is a field with the addition and multiplication operators defined by \oplus and \otimes respectively.

- 2. (5 points) Let C be an (n, k) binary linear block code having minimum distance d_{min} and weight enumerator A(z). Let **G** be a generator matrix of C. Consider the length 3n code C_1 with generator matrix $\mathbf{G}_1 = \begin{bmatrix} \mathbf{G} & \mathbf{G} & \mathbf{G} \end{bmatrix}$. Answer the following in terms of the parameters of C. Explain your answers.
 - (a) What is the dimension of C_1 ?
 - (b) What is the minimum distance of C_1 ?
 - (c) What is the weight enumerator of C_1 ?
- 3. (5 points) Let C be a binary Hamming code of dimension k.
 - (a) Find the number of minimum weight nonzero codewords in C in terms of k.
 - (b) Find the number of maximum weight codewords in C as a function of k.
- 4. (5 points) Show that the binary Reed-Muller codes RM(1,4) and RM(2,4) are dual codes of each other.
- 5. (5 points) Consider a (n, k) binary cyclic code C with generator polynomial g(X).
 - (a) Show that the polynomial $g^*(X) = X^{n-k}g(X^{-1})$ generates an (n,k) cyclic code.
 - (b) Let C_1 be the cyclic code generated by $g^*(X)$. Find the weight enumerator of C_1 in terms of the weight enumerator A(z) of C.
- 6. (5 points) Let $g(X) = 1 + g_1 X + g_2 X^2 + \dots + g_{r-1} X^{r-1} + X^r$ be a polynomial whose coefficients define the following circuit where $a, g_i, s_i \in \mathbb{F}_2$. The addition operator corresponds addition in \mathbb{F}_2 . The rectangular blocks correspond to a shift register where the bits s_0, s_1, \dots, s_{r-1} represent the current state.

- (a) If $s(X) = s_0 + s_1 X + \dots + s_{r-1} X^{r-1}$ is the polynomial corresponding to the current state of the circuit before the input *a* is applied, find the polynomial corresponding to the next state in terms of s(X), g(X) and *a*.
- (b) Suppose the initial state of the circuit is all-zeros, i.e. $s_i = 0$ for all *i*. If the input corresponds to a sequence of *n* bits $a_{n-1}, a_{n-2}, \ldots, a_1, a_0$ with the shift register being shifted right once after each input bit is applied, show that the polynomial corresponding to the final state is the remainder when $\sum_{i=0}^{n-1} a_i X^i$ is divided by g(X).