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Hamming Code



Hamming Code
• For any integer m ≥ 3, the code with parity check matrix

consisting of all nonzero columns of length m is a
Hamming code

• For m = 3

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1


• For m = 4

H =


1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1


• Length of the code n = 2m − 1
• Dimension of the code k = 2m −m − 1
• Minimum distance of the code dmin = 3
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Hamming’s Approach
• Observes that a single parity check can detect a single

error
• In a block of n bits, m locations are information bits and the

remaining n −m bits are check bits
• The check bits enforce even parity on subsets of the

information bits
• In the received block of n bits the check bits are

recalculated
• If the observed and recalculated values agree write a 0.

Otherwise write a 1
• The sequence of n −m 1’s and 0’s is called the checking

number and gives the location of the single error
• To be able to locate all single bit error locations

2n−m ≥ n + 1 =⇒ 2m ≤ 2n

n + 1
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Hamming’s Approach
• The LSB of the checking number should enforce even

parity on locations 1,3,5,7,9, . . .
• The next significant bit should enforce even parity on

locations 2,3,6,7,10, . . .
• The third significant bit should enforce even parity on

locations 4,5,6,7,12, . . .
• For n = 7, the bound on m is

2m ≤ 27

7 + 1
= 24

• Choose 1,2,4 as parity check locations and 3,5,6,7 as
information bit locations
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Exercises
Let H be a parity check matrix for a Hamming code.
• What happens if we add a row of all ones to H?

H′ =


1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1
1 1 1 1 1 1 1


• What happens if we delete all columns of even weight from

H?

H
′′
=

1 0 0 1
0 1 0 1
0 0 1 1


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Reed-Muller Code



Reed-Muller Code
• Let f (X1,X2, . . . ,Xm) be a Boolean function of m variables
• For the 2m inputs the values of f form a vector v(f ) ∈ F2m

2

• Example: m = 3 and f (X1,X2,X3) = X1X2 + X3

v(f ) =
[
0 1 0 1 0 1 1 0

]
• Let P(r ,m) be the set of all Boolean functions of m

variables having degree r or less
• The r th order binary Reed-Muller code RM(r ,m) is given

by the vectors {
v(f )

∣∣∣∣f ∈ P(r ,m)

}
• Is RM(r ,m) linear?
• Length of the code n = 2m

• Dimension of the code k = 1 +
(m

1

)
+ · · ·+

(m
r

)
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Basis for RM(2,4)

RM(2,4) =
{

v(f )
∣∣∣∣f ∈ P(2,4)

}
P(2,4) = 〈1,X1,X2,X3,X4,X1X2,X1X3,X1X4,X2X3,X2X4,X3X4〉

G =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


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Minimum Distance of RM(r ,m)

• RM(r ,m) =

{
v(f )

∣∣∣∣f ∈ P(r ,m)

}
• X1X2 · · ·Xr ∈ P(r ,m) =⇒ dmin ≤ 2m−r

• Let f (X1, . . . ,Xm) be a non-zero polynomial of degree at
most r

f (X1, . . . ,Xm) = X1X2 · · ·Xs + g(X1, . . . ,Xm)

where X1X2 · · ·Xs is a maximum degree term in f and s ≤ r
• For any assignment of values to variables Xs+1, . . . ,Xm in f

the result is a non-zero polynomial
• For every assignment of values to Xs+1, . . . ,Xm, there is an

assignment of values to X1, . . . ,Xs where f is non-zero
=⇒ dmin ≥ 2m−s ≥ 2m−r

dmin = 2m−r
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Example

f1(X1,X2,X3,X4) = X1X2, f2(X1,X2,X3,X4) = X1X2 + X2X3 + X3X4 + X1 + X3

X1 X2 X3 X4 f1(X1,X2,X3,X4) f2(X1,X2,X3,X4)

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
0 0 0 1 0 0
0 1 0 1 0 0
1 0 0 1 0 1
1 1 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 0
1 0 1 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 1 1 1 0 1
1 0 1 1 0 1
1 1 1 1 1 1
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Decoding the RM(2,4) Code

G =



g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10


=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


A codeword v can be expressed as a linear combination of rows of G

v =
[
v0 v1 · · · v14 v15

]
=

10∑
i=0

uigi

where ui ’s represent message bits
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Decoding u10

u10 = v0 + v1 + v2 + v3

u10 = v4 + v5 + v6 + v7

u10 = v8 + v9 + v10 + v11

u10 = v12 + v13 + v14 + v15

Let r = v + e be the received vector.
If wt(e) = 1, then the following sums have majority equal to u10

A1 = r0 + r1 + r2 + r3

A2 = r4 + r5 + r6 + r7

A3 = r8 + r9 + r10 + r11

A4 = r12 + r13 + r14 + r15
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Decoding u9

u9 = v0 + v1 + v4 + v5

u9 = v2 + v3 + v6 + v7

u9 = v8 + v9 + v12 + v13

u9 = v10 + v11 + v14 + v15

If wt(e) = 1, then the following sums have majority equal to u9

A1 = r0 + r1 + r4 + r5

A2 = r2 + r3 + r6 + r7

A3 = r8 + r9 + r12 + r13

A4 = r10 + r11 + r14 + r15
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Decoding u4

After decoding u10,u9,u8,u7,u6,u5 remove the corresponding
basis vectors from r

r(1) = r +
10∑

i=5

uigi =
4∑

i=0

uigi + e

If wt(e) = 1, then the following sums have majority equal to u4

A1 = r (1)0 + r (1)1 , A5 = r (1)8 + r (1)9

A2 = r (1)2 + r (1)3 , A6 = r (1)10 + r (1)11

A3 = r (1)4 + r (1)5 , A7 = r (1)12 + r (1)13

A4 = r (1)6 + r (1)7 , A8 = r (1)14 + r (1)15

u1,u2,u3 can also be decoded using eight sums
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Decoding u0

After decoding u1, . . . ,u10 remove the corresponding basis
vectors from r

r(2) = r +
10∑

i=1

uigi = u0g0 + e

There are 16 noisy versions of u0 whose majority is u0 if
wt(e) = 1.
This technique is called majority-logic decoding.
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Questions? Takeaways?
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