Finite Fields

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 25, 2014

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Definition

A finite field is a field with a finite cardinality.

Example

 $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ with mod p addition and multiplication where p is a prime. Such fields are called prime fields.

Some Observations

Example

- $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$
- $2^5 = 2 \mod 5$, $3^5 = 3 \mod 5$, $4^5 = 4 \mod 5$
- All elements of \mathbb{F}_5 are roots of $x^5 x$
- $2^2 = 4 \mod 5$, $2^3 = 3 \mod 5$, $2^4 = 1 \mod 5$
- $\mathbb{F}_5^* = \{1, 2, 3, 4\}$ is cyclic

- $F = \{0, 1, y, y + 1\}$ under + and * modulo $y^2 + y + 1$
- $y^4 = y \mod (y^2 + y + 1), (y + 1)^4 = y + 1 \mod (y^2 + y + 1)$
- All elements of F are roots of $x^4 x$
- $(y+1)^2 = y \mod (y^2 + y + 1), (y+1)^3 = 1 \mod (y^2 + y + 1)$
- $F^* = \{1, y, y + 1\}$ is cyclic

Field Isomorphism

Definition

Fields F and G are isomorphic if there exists a bijection $\phi: F \to G$ such that

$$\phi(\alpha + \beta) = \phi(\alpha) \oplus \phi(\beta)
\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in F$.

•
$$F = \left\{a_0 + a_1x + a_2x^2 \middle| a_i \in \mathbb{F}_2\right\}$$
 under $+$ and $*$ modulo $x^3 + x + 1$

•
$$G = \left\{ a_0 + a_1 x + a_2 x^2 \middle| a_i \in \mathbb{F}_2 \right\}$$
 under $+$ and $*$ modulo $x^3 + x^2 + 1$

Uniqueness of a Prime Field

Theorem

Every field F with a prime cardinality p is isomorphic to \mathbb{F}_p Proof.

- Let F be any field with p elements where p is prime
- F has a multiplicative identity 1

i times

- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1+1, \ldots\}$
- By Lagrange's theorem, |S(1)| divides p
- Since $1 \neq 0$, $|S(1)| \geq 2 \implies |S(1)| = p \implies S(1) = F$
- Every element in F is of the form $\underbrace{1+1+\cdots+1}_{i \text{ times}}$
- F is a field under the operations $\underbrace{1+1+\cdots+1}_{j \text{ times}} + \underbrace{1+1+\cdots+1}_{j \text{ times}} = \underbrace{1+1+\cdots+1}_{j+j \text{ mod } p \text{ times}}$ $\underbrace{1+1+\cdots+1}_{j+j \text{ mod } p \text{ times}} + \underbrace{1+1+\cdots+1}_{j+j \text{ mod } p \text{ times}}$

ii mod p times

i times

Proof of F being Isomorphic to \mathbb{F}_p

Consider the bijection
$$\phi: F \to \mathbb{F}_p$$

$$\phi\left(\underbrace{1+1+\cdots+1}_{i \text{ times}}\right)=i \bmod p$$

$$\phi\left(\underbrace{1+\cdots+1}_{i \text{ times}} + \underbrace{1+\cdots+1}_{j \text{ times}}\right) = \phi\left(\underbrace{1+\cdots+1}_{i+j \text{ times}}\right)$$

$$= (i+j) \bmod p = i \bmod p + j \bmod p$$

$$\phi\left(\underbrace{[1+\cdots+1]}_{i \text{ times}} * \underbrace{[1+\cdots+1]}_{j \text{ times}}\right) = \phi\left(\underbrace{1+\cdots+1}_{ij \text{ times}}\right)$$

$$= ij \mod p = (i \mod p)(j \mod p)$$

Subfields

Definition

A nonempty subset S of a field F is called a subfield of F if

- $\alpha + \beta \in S$ for all $\alpha, \beta \in S$
- $-\alpha \in S$ for all $\alpha \in S$
- $\alpha * \beta \in S \setminus \{0\}$ for all nonzero $\alpha, \beta \in S$
- $\alpha^{-1} \in S \setminus \{0\}$ for all nonzero $\alpha \in S$

Example

 $F = \{0, 1, x, x + 1\}$ under + and * modulo $x^2 + x + 1$ \mathbb{F}_2 is a subfield of F

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- F₂ has characteristic 2
- F₅ has characteristic 5
- R has characteristic 0

Theorem

The characteristic of a finite field is prime

Prime Subfield of a Finite Field

Theorem

Every finite field has a prime subfield.

Examples

- \mathbb{F}_2 has prime subfield \mathbb{F}_2
- $F = \{0, 1, x, x + 1\}$ under + and * modulo $x^2 + x + 1$ has prime subfield \mathbb{F}_2

Proof.

- Let F be any field with q elements
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1+1, \ldots\}$
- |S(1)| = p where p is the characteristic of F
- S(1) is a subfield of F and is isomorphic to \mathbb{F}_p

Order of a Finite Field

Theorem

Any finite field has p^m elements where p is a prime and m is a positive integer.

Example

• $F = \{0, 1, x, x + 1\}$ has 2^2 elements

Proof.

- Let F be any field with q elements and characteristic p
- F has a subfield isomorphic to \mathbb{F}_p
- F is a vector space over \mathbb{F}_p
- F has a finite basis v_1, v_2, \ldots, v_m
- Every element of F can be written as
 α₁ν₁ + α₂ν₂ + ··· + α_mν_m where α_i ∈ F_p

Polynomials over a Field

Definition

A nonzero polynomial over a field *F* is an expression

$$f(x) = f_0 + f_1 x + f_2 x^2 + \cdots + f_m x^m$$

where $f_i \in F$ and $f_m \neq 0$. If $f_m = 1$, f(x) is said to be monic.

Definition

The set of all polynomials over a field F is denoted by F[x]

- $\mathbb{F}_3 = \{0, 1, 2\}, x^2 + 2x \in \mathbb{F}_3[x]$ and is monic
- $x^2 + 5$ is a monic polynomial in $\mathbb{R}[x]$

Divisors of Polynomials over a Field

Definition

A polynomial $a(x) \in F[x]$ is said to be a divisor of a polynomial $b(x) \in F[x]$ if b(x) = q(x)a(x) for some $q(x) \in F[x]$

Example

 $x - i\sqrt{5}$ is a divisor of $x^2 + 5$ in $\mathbb{C}[x]$ but not in $\mathbb{R}[x]$

Definition

Every polynomial f(x) in F[x] has trivial divisors consisting of nonzero elements in F and $\alpha f(x)$ where $\alpha \in F \setminus \{0\}$

- In $\mathbb{F}_3[x]$, $x^2 + 2x$ has trivial divisors 1,2, $x^2 + 2x$, $2x^2 + x$
- In $\mathbb{F}_5[x]$, $x^2 + 2x$ has trivial divisors 1, 2, 3, 4, $x^2 + 2x$, $2x^2 + 4x$, $3x^2 + x$, $4x^2 + 3x$

Prime Polynomials

Definition

An irreducible polynomial is a polynomial of degree 1 or more which has only trivial divisors.

Examples

- In $\mathbb{F}_3[x]$, $x^2 + 2x$ has non-trivial divisors x, x + 2 and is not irreducible
- In $\mathbb{F}_3[x]$, x + 2 has only trivial divisors and is irreducible
- In any F[x], $x + \alpha$ where $\alpha \in F$ is irreducible

Definition

A monic irreducible polynomial is called a prime polynomial.

Constructing a Field of p^m Elements

- Choose a prime polynomial g(x) of degree m in $\mathbb{F}_p[x]$
- Consider the set of remainders when polynomials in $\mathbb{F}_p[x]$ are divided by g(x)

$$R_{\mathbb{F}_p,m} = \left\{ r_0 + r_1 x + \dots + r_{m-1} x^{m-1} \middle| r_i \in \mathbb{F}_p \right\}$$

- The cardinality of $R_{\mathbb{F}_p,m}$ is p^m
- $R_{\mathbb{F}_p,m}$ with addition and multiplication mod g(x) is a field

- $R_{\mathbb{F}_2,2} = \{0,1,x,x+1\}$ is a field under + and * modulo $x^2 + x + 1$
- $R_{\mathbb{F}_2,3}=\left\{r_0+r_1x+r_2x^2\middle|r_i\in\mathbb{F}_2\right\}$ under + and * modulo x^3+x+1

Factorization of Polynomials

Theorem

Every monic polynomial $f(x) \in F[x]$ can be written as a product of prime factors

$$f(x) = \prod_{i=1}^k a_i(x)$$

where each $a_i(x)$ is a prime polynomial in F[x]. The factorization is unique, up to the order of the factors.

- In $\mathbb{F}_2[x]$, $x^3 + 1 = (x+1)(x^2 + x + 1)$
- In $\mathbb{C}[x]$, $x^2 + 5 = (x + i\sqrt{5})(x i\sqrt{5})$
- In $\mathbb{R}[x]$, $x^2 + 5$ is itself a prime polynomial

Roots of Polynomials

Definition

If $f(x) \in F[x]$ has a degree 1 factor $x - \alpha$ for some $\alpha \in F$, then α is called a root of f(x)

Examples

- In $\mathbb{F}_2[x]$, $x^3 + 1$ has 1 as a root
- In $\mathbb{C}[x]$, $x^2 + 5$ has two roots $\pm i\sqrt{5}$
- In $\mathbb{R}[x]$, $x^2 + 5$ has no roots

Theorem

In any field F, a monic polynomial $f(x) \in F[x]$ of degree m can have at most m roots in F. If it does have m roots $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$, then the unique factorization of f(x) is

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_m).$$

Multiplicative Cyclic Subgroups in a Field

Theorem

In any field F, the multiplicative group F^* of nonzero elements has at most one cyclic subgroup of any given order n. If such a subgroup exists, then its elements $\{1, \beta, \beta^2, \ldots, \beta^{n-1}\}$ satisfy

$$x^{n}-1=(x-1)(x-\beta)(x-\beta^{2})\cdots(x-\beta^{n-1}).$$

- In ℝ*, cyclic subgroups of order 1 and 2 exist.
- In \mathbb{C}^* , cyclic subgroups exist for every order n.

Multiplicative Cyclic Subgroups in a Field

Proof of Theorem.

- Let S be a cyclic subgroup of F* having order n.
- Then $S = \{\beta, \beta^2, \dots, \beta^{n-1}, \beta^n = 1\}$ for some $\beta \in S$.
- For every $\alpha \in S$, $\alpha^n = 1 \implies \alpha$ is a root of $x^n 1 = 0$.
- Since $x^n 1$ has at most n roots in F, S is unique.
- Since β^i is a root, $x \beta^i$ is a factor of $x^n 1$ for $i = 1, \dots, n$
- By the uniqueness of factorization, we have

$$x^{n}-1=(x-1)(x-\beta)(x-\beta^{2})\cdots(x-\beta^{n-1}).$$

Factoring $x^q - x$ over a Field F_q

- Let F_q be a finite field of order q
- For any $\beta \in F_q^*$, let $S(\beta) = \{\beta, \beta^2, \dots, \beta^n = 1\}$ be the cyclic subgroup of F_q^* generated by β
- The cardinality $|S(\beta)|$ is called the multiplicative order of β and $\beta^{|S(\beta)|}=1$
- By Lagrange's theorem, $|S(\beta)|$ divides $|F_q^*| = q 1$
- So for any $\beta \in F_q^*$, $\beta^{q-1} = 1$

Theorem

In a finite field F_q with q elements, the nonzero elements of F_q are the q-1 distinct roots of $x^{q-1}-1$

$$x^{q-1}-1=\prod_{\beta\in F_a^*}(x-\beta).$$

The elements of F_q are the q distinct roots of $x^q - x$, i.e. $x^q - x = \prod_{x \in F_q} (x - \beta)$

Factoring $x^q - x$ over a Field F_q

Example

$$\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$$

$$(x-1)(x-2)(x-3)(x-4) = x^4 - 10x^3 + 35x^2 - 50x + 24$$

$$= x^4 - 1$$

$$x(x-1)(x-2)(x-3)(x-4) = x^5 - x$$

$$F = \{0, 1, y, y + 1\} \subset \mathbb{F}_2[y] \text{ under } + \text{ and } * \text{ modulo } y^2 + y + 1$$

$$(x - 1)(x - y)(x - y - 1) = x^3 - x^2(y + 1 + y + 1)$$

$$+ x(y + y + 1 + y^2 + y)$$

$$- y^2 - y$$

$$= x^3 - 1$$

$$x(x - 1)(x - y)(x - y - 1) = x^4 - x$$

F_q^* is Cyclic

- A primitive element of F_q is an element lpha with |S(lpha)|=q-1
- If α is a primitive element, then $\{1, \alpha, \alpha^2, \dots, \alpha^{q-2}\} = F_q^*$
- To show that F_q^{*} is cyclic, it is enough to show that a primitive element exists
- By Lagrange's theorem, the multiplicative order |S(β)| of every β ∈ F_q^{*} divides q − 1
- The size d of a cyclic subgroup of F_q^* divides q-1
- The number of elements having order d in a cyclic subgroup of size d is φ(d)
- In F_a^* , there is at most one cyclic group of each size d
- All elements in F_q^{*} having same multiplicative order d have to belong to the same subgroup of order d

F_q^* is Cyclic

• The number of elements in F_q^* having order less than q-1 is at most

$$\sum_{d:d|(q-1),d\neq q-1}\phi(d)$$

The Euler numbers satisfy

$$q-1=\sum_{d:d|(q-1)}\phi(d)$$

so we have

$$q-1-\sum_{d:d|(q-1),d\neq q-1}\phi(d)=\phi(q-1)$$

- F_q^* has at least $\phi(q-1)$ elements of order q-1
- Since $\phi(q-1) \ge 1$, F_q^* is cyclic

Summary of Results

- Every finite field has a prime subfield isomorphic to \mathbb{F}_p
- Any finite field has p^m elements where p is a prime and m is a positive integer.
- Given an irreducible polynomial g(x) of degree m in $\mathbb{F}_p[x]$, the set of remainders $R_{\mathbb{F}_p,m}$ is a field under + and * modulo g(x)
- The nonzero elements of a finite field F_q are the q − 1 distinct roots of x^{q-1} − 1
- The elements of F_q are the q distinct roots of $x^q x$
- F_q^* is cyclic

Some More Results

- Every finite field F_q having characteristic p is isomorphic to a polynomial remainder field $F_{g(x)}$ where g(x) is an irreducible polynomial in $\mathbb{F}_p[x]$ of degree m
- All finite fields of same size are isomorphic
- Finite fields with p^m elements exist for every prime p and integer m ≥ 1

Questions? Takeaways?