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Fields

Definition
A set F together with two binary operations + and x is a field if
e F is an abelian group under + whose identity is called 0

e F* = F\ {0} is an abelian group under x whose identity is
called 1

e Forany a,b,ce F
ax(b+c)=axb+axc
Definition
A finite field is a field with a finite cardinality.

Example
F, =1{0,1,2,...,p— 1} with mod p addition and multiplication
where p is a prime. Such fields are called prime fields.
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Some Observations

Example

Fs ={0,1,2,3,4}

25 =2mod5,3°=3mod5,4° =4 mod 5
All elements of Fs are roots of x° — x

e 22=4mod5,2® =3mod5,2* =1mod5
F; = {1,2,3,4} is cyclic

Example

F=1{0,1,y,y + 1} under + and * modulo y? + y + 1
y*=ymod (Y2 +y+1),(y+1)*=y+1mod (y°+y+1)
All elements of F are roots of x* — x

(y+1)2=ymod (Y2 +y+1),(y+1)°=1mod (y>+y +1)
e F*={1y,y+ 1} iscyclic
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Field Isomorphism

Definition
Fields F and G are isomorphic if there exists a bijection
¢ : F — G such that

o+ pB) = o) ® o(f)
plaxp) = o(a)@¢(h)

forall o, 5 € F.

Example

o = {ao +aix + axx?|a € IE‘g} under + and * modulo x® + x + 1

e G= {ao +aix + axx?la € ]Fg} under + and *« modulo x® + x? + 1



Uniqueness of a Prime Field

Theorem
Every field F with a prime cardinality p is isomorphic to Fp,
Proof.

e Let F be any field with p elements where p is prime
F has a multiplicative identity 1

By Lagrange’s theorem, |S(1)| divides p
Since1#0,|S(1)|>2 = |S(1)|=p = S(1)=F
Every elementin Fisoftheform 1 +1+.--+1

N ——

i times

F is a field under the operations
1+1+-- 414141+ +1=14+1+-.-41and

i times jtimes i+j mod p times

R A e e L Ry

i times j times if mod p times

Consider the additive subgroup S(1) = (1) = {1,1+1,...
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Proof of F being Isomorphic to I,
Consider the bijection ¢ : F — Fp

¢(1+1+~--+1) =imod p
Y ———
i times

¢(1+~-+1+1+.~+1> = ¢(1+~-+1)
—~ ———
i times Jtimes i+j times

=(i+j)modp = imodp+ modp

¢(1+-~+1)
I
i times j times ij times

ol 1+ +1]x[1+---+1]
=ijmodp = (imodp)(j mod p)




Subfields

Definition
A nonempty subset S of a field F is called a subfield of F if
e a+pBecSforalla,Be S
e —ac Sforallae S
e axf e S\ {0} forallnonzero o, 5 € S
e o' S\ {0} forall nonzeroa € S

Example

F ={0,1,x,x + 1} under + and * modulo x? + x + 1
F5 is a subfield of F



Characteristic of a Field

Definition
Let F be a field with multiplicative identity 1. The characteristic
of F is the smallest integer p such that

14+1+--+1+1=0

-~

p times

Examples

e [F5 has characteristic 2
e 5 has characteristic 5
¢ R has characteristic 0

Theorem
The characteristic of a finite field is prime



Prime Subfield of a Finite Field

Theorem
Every finite field has a prime subfield.

Examples

e F5 has prime subfield F»

e F=1{0,1,x,x 4 1} under + and * modulo x? + x + 1 has
prime subfield F»

Proof.

e Let F be any field with g elements

F has a multiplicative identity 1

Consider the additive subgroup S(1) = (1) ={1,1+1,...}
|S(1)| = p where p is the characteristic of F

S(1) is a subfield of F and is isomorphic to Fp,
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Order of a Finite Field

Theorem
Any finite field has p™ elements where p is a prime and m is a
positive integer.

Example

e F={0,1,x,x + 1} has 22 elements

Proof.

e Let F be any field with g elements and characteristic p
F has a subfield isomorphic to Iy

F is a vector space over [Fp,

F has a finite basis vy, vo, ..., vy

Every element of F can be written as
a1V + asVo + - - - + amVm Where o € Fp
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Polynomials over a Field

Definition
A nonzero polynomial over a field F is an expression

f(X)=fy+ x4+ bx?+ -+ fpx™

where f; € F and f, # 0. If f, = 1, f(x) is said to be monic.

Definition
The set of all polynomials over a field F is denoted by F[x]

Examples

e F3 ={0,1,2}, x2 + 2x € F3[x] and is monic
e x? 4 5 is a monic polynomial in R[x]
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Divisors of Polynomials over a Field

Definition

A polynomial a(x) € F[x] is said to be a divisor of a polynomial
b(x) € F[x] if b(x) = g(x)a(x) for some q(x) € F[x]

Example

x — iv/5 is a divisor of x2 4 5 in C[x] but not in R[x]

Definition

Every polynomial f(x) in F[x] has trivial divisors consisting of
nonzero elements in F and af(x) where a € F\ {0}

Examples

o In F3[x], x? + 2x has trivial divisors 1,2, X2 + 2x, 2x2 + x

e InFs5[x], x? + 2x has trivial divisors 1, 2, 3, 4, x° + 2x,
2x2 + 4x, 3x°% + x, 4x° + 3x
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Prime Polynomials

Definition
An irreducible polynomial is a polynomial of degree 1 or more

which has only trivial divisors.

Examples
e In F3[x], x? + 2x has non-trivial divisors x, x + 2 and is not

irreducible
e In F3[x], x + 2 has only trivial divisors and is irreducible

e Inany F[x], x + a where a € F is irreducible

Definition
A monic irreducible polynomial is called a prime polynomial.
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Constructing a Field of p™ Elements

Choose a prime polynomial g(x) of degree min Fp[x]

Consider the set of remainders when polynomials in Fp[x]
are divided by g(x)

RIFp,m = {fo +nXx+---+ I’m,1Xm_1 ri € Fp}

The cardinality of Rr, m is p™
Rr, m with addition and multiplication mod g(x) is a field

Examples

e Ar,>=1{0,1,x,x + 1} is a field under 4 and * modulo
X2+ x+1

° Rp,3= {ro + X+ nXx2|r e IFQ} under + and * modulo

X3+ x+1
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Factorization of Polynomials

Theorem

Every monic polynomial f(x) € F[x] can be written as a product
of prime factors

k
f(x) =T aix)
i=1

where each a;(x) is a prime polynomial in F[x]. The
factorization is unique, up to the order of the factors.

Examples

o InFox], x3+1=(x+1)(x2+x+1)
e InC[x], x? +5 = (x + iv/5)(x — i/5)
o InR[x], x2 + 5 is itself a prime polynomial
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Roots of Polynomials

Definition

If f(x) € F[x] has a degree 1 factor x — « for some « € F, then
a is called a root of f(x)

Examples

e InFy[x], x> + 1 has 1 as a root
e In C[x], x? + 5 has two roots +iv/5
e In R[x], x2 + 5 has no roots

Theorem

In any field F, a monic polynomial f(x) € F[x] of degree m can
have at most m roots in F. If it does have m roots
{a1,ap,...,am}, then the unique factorization of f(x) is

f(xX)=(x—a1)(x —az) - (X —am).
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Multiplicative Cyclic Subgroups in a Field

Theorem

In any field F, the multiplicative group F* of nonzero elements
has at most one cyclic subgroup of any given order n. If such a
subgroup exists, then its elements {1 B2, B’H} satisfy

X' =1 = (x = 1)(x = B)(x = %) (x = ")

Examples

¢ In R*, cyclic subgroups of order 1 and 2 exist.
¢ In C*, cyclic subgroups exist for every order n.
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Multiplicative Cyclic Subgroups in a Field

Proof of Theorem.

e Let S be a cyclic subgroup of F* having order n.

Then S={B,42,...,8"",3" =1} for some 3 € S.
Foreverya € S,a"=1 = «isarootof x" —1=0.
Since x" — 1 has at most nroots in F, S is unique.
Since 3’ is aroot, x — B/ is afactorof x" —1fori=1,...,n
By the uniqueness of factorization, we have

X" =1 = (x=1)(x = B)(x = %) - (x = g"1).

18/25



Factoring x9 — x over a Field Fq

Let Fq be a finite field of order q

Forany 8 € Fj, let S(8) = {3, 32,..., 8" = 1} be the cyclic
subgroup of F; generated by 3

The cardinality |S(3)| is called the multiplicative order of g
and 5‘3(5” =1

By Lagrange’s theorem, [S(3)| divides |F;| = g — 1

e Soforany g e Fz, g9 =1

Theorem
In a finite field Fq with q elements, the nonzero elements of Fq
are the q — 1 distinct roots of x4~ — 1

X371 —1= [ (x-8).

BeFy

The elements of Fq are the q distinct roots of x9 — x, i.e.
X9 —x= erFq(X - 5)
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Factoring x9 — x over a Field Fq

Example
Fs = {0,1,2,3,4}

(x —1)(x—2)(x—3)(x—4) = x*—10x®+35x% - 50x + 24
= x*—1
x(x =1 (x-2)(x=3)(x—4) = x°—x

Example
F =1{0,1,y,y + 1} C Fo[y] under + and * modulo y? + y + 1

x=Dx-yY)x—y—-1) = =xP(y+1+y+1)
XYYy +H1+y5+y)
A
= x3 -1
x(x=N)(x—y)x—y—-1) = x*—x
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Fg is Cyclic

A primitive element of F; is an element o with
1S(a)[ =g —1

e If o is a primitive element, then {1,a,0?,...,a972} = F;

« To show that - is cyclic, it is enough to show that a
primitive element exists

e By Lagrange’s theorem, the multiplicative order |S(3)| of
every 3 € Fg divides g — 1

* The size d of a cyclic subgroup of F; divides q — 1

e The number of elements having order d in a cyclic
subgroup of size d is ¢(d)

e In Fg, there is at most one cyclic group of each size d

* All elements in F; having same multiplicative order d have
to belong to the same subgroup of order d
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Fg is Cyclic
 The number of elements in F; having order less than q — 1

is at most
Y é(d)

d:d|(q—1),d#q—1
e The Euler numbers satisfy

g-1= Y ¢(d)
d:d|(g—1)
so we have

g-1- > éd)=¢(q-1)

d:d|(g—1),d#q—1

e Fg has at least ¢(q — 1) elements of order q — 1
e Since ¢(q —1) > 1, Fj is cyclic
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Summary of Results

Every finite field has a prime subfield isomorphic to F,,
Any finite field has p™ elements where p is a prime and m
is a positive integer.

Given an irreducible polynomial g(x) of degree min [Fp[x],
the set of remainders Ry, m is a field under + and *
modulo g(x)

The nonzero elements of a finite field F are the g — 1
distinct roots of x4~ — 1

The elements of Fy are the g distinct roots of x9 — x
Fq is cyclic
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Some More Results

« Every finite field F4 having characteristic p is isomorphic to
a polynomial remainder field Fy () where g(x) is an
irreducible polynomial in Fp[x] of degree m

¢ All finite fields of same size are isomorphic

e Finite fields with p™ elements exist for every prime p and
integer m > 1
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Questions? Takeaways?
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