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Binary Block Codes



Binary Block Code
Let F2 be the set {0,1}.

Definition
An (n, k) binary block code is a subset of Fn

2 containing 2k

elements

Example
n = 3, k = 1, C = {000,111}

Example
n ≥ 2, C = Set of vectors of even Hamming weight in Fn

2,
k = n − 1
n = 3, k = 2, C = {000,011,101,110}
This code is called the single parity check code
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Encoding Binary Block Codes
The encoder maps k -bit information blocks to codewords.

Definition
An encoder for an (n, k) binary block code C is an injective
function from Fk

2 to C

Example (3-Repetition Code)
0→ 000,1→ 111
or
1→ 000,0→ 111
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Decoding Binary Block Codes
The decoder maps n-bit received blocks to codewords

Definition
A decoder for an (n, k) binary block code is a function from Fn

2
to C

Example (3-Repetition Code)
n = 3, C = {000,111}

000→ 000 111→ 111
001→ 000 110→ 111
010→ 000 101→ 111
100→ 000 011→ 111

Since encoding is injective, information bits can be recovered
as 000→ 0,111→ 1
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Optimal Decoder for Binary Block Codes
• Optimality criterion: Maximum probability of correct

decision
• Let x ∈ C be the transmitted codeword
• Let y ∈ Fn

2 be the received vector
• Maximum a posteriori (MAP) decoder is optimal

x̂MAP = argmaxx∈C Pr(x|y)

• If all codewords are equally likely to be transmitted, then
maximum likelihood (ML) decoder is optimal

x̂ML = argmaxx∈C Pr(y|x)

• Over a BSC with p < 1
2 , the minimum distance decoder is

optimal if the codewords are equally likely

x̂ = argminx∈Cd(x,y)
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Error Correction Capability of Binary Block Codes

Definition
The minimum distance of a block code C is defined as

dmin = min
x,y∈C,x 6=y

d(x,y)

Example (3-Repetition Code)
C = {000,111}, dmin = 3

Example (Single Parity Check Code)
C = Set of vectors of even weight in Fn

2, dmin = 2

Theorem
For a binary block code with minimum distance dmin, the
minimum distance decoder can correct upto bdmin−1

2 c errors.
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Complexity of Encoding and Decoding

Encoder

• Map from Fk
2 to C

• Worst case storage
requirement = O(n2k )

Decoder

• Map from Fn
2 to C

• x̂ML = argmaxx∈C Pr(y|x)
• Worst case storage

requirement = O(n2k )

• Time complexity = O(n2k )

Need more structure to reduce complexity
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Binary Linear Block Codes



Vector Spaces over F2

• Define the following operations on F2

• Addition +
• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1
• 1 + 1 = 0

• Multiplication ×
• 0× 0 = 0
• 0× 1 = 0
• 1× 0 = 0
• 1× 1 = 1

• F2 is also represented as GF(2)

Fact
The set Fn

2 is a vector space over F2
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Binary Linear Block Code

Definition
An (n, k) binary linear block code is a k -dimensional subspace
of Fn

2

Theorem
Let S be a nonempty subset of Fn

2. Then S is a subspace of Fn
2

if u + v ∈ S for any two u and v in S.

Example (3-Repetition Code)
C = {000,111} 6= φ
000 + 000 = 000, 000 + 111 = 111, 111 + 111 = 000

Example (Single Parity Check Code)
C = Set of vectors of even weight in Fn

2
wt(u + v) = wt(u) + wt(v)− 2 wt(u ∩ v)
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Encoding Binary Linear Block Codes

Definition
A generator matrix for a k -dimensional binary linear block code
C is a k × n matrix G whose rows form a basis for C.

Linear Block Code Encoder
Let u be a 1× k binary vector of information bits. The
corresponding codeword is

v = uG

Example (3-Repetition Code)
G =

[
1 1 1

]
[
0 0 0

]
=

[
0
] [

1 1 1
][

1 1 1
]

=
[
1
] [

1 1 1
]
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Encoding Binary Linear Block Codes

Example (Single Parity Check Code)
n = 3, k = 2, C = {000,011,101,110}

G =

[
1 0 1
0 1 1

]

[
0 0 0

]
=

[
0 0

] [1 0 1
0 1 1

]
[
0 1 1

]
=

[
0 1

] [1 0 1
0 1 1

]
[
1 0 1

]
=

[
1 0

] [1 0 1
0 1 1

]
[
1 1 0

]
=

[
1 1

] [1 0 1
0 1 1

]
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Encoding Complexity of Binary Linear Block Codes

• Need to store G
• Storage requirement = O(nk)� O(n2k )

• Time complexity = O(nk)
• Complexity can be reduced further by imposing more

structure in addition to linearity
• Decoding complexity? What is the optimal decoder?
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Decoding Binary Linear Block Codes

• Codewords are equally likely⇒ ML decoder is optimal

x̂ML = argmaxx∈C Pr(y|x)

• Equally likely codewords and channel is BSC⇒ Minimum
distance decoder is optimal

x̂ML = argminx∈Cd(x,y)

• To exploit linear structure to reduce decoding complexity,
we need to study the dual code
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Inner Product of Vectors in Fn
2

Definition
Let u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) belong to Fn

2.
The inner product of u and v is given by

u · v =
n∑

i=1

uivi

u · v = 0⇒ u and v are orthogonal.

Examples

•
(
1 0 0

)
·
(
0 1 1

)
= 1 · 0 + 0 · 1 + 0 · 1 = 0

•
(
1 1 0

)
·
(
0 1 1

)
= 1 · 0 + 1 · 1 + 0 · 1 = 1

•
(
1 1 1

)
·
(
0 1 1

)
= 1 · 0 + 1 · 1 + 1 · 1 = 0

•
(
0 1 1

)
·
(
0 1 1

)
= 0 · 0 + 1 · 1 + 1 · 1 = 0

Nonzero vectors can be self-orthogonal
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Dual Code of a Linear Block Code

Definition
Let C be an (n, k) binary linear block code. Let C⊥ be the set of
vectors in Fn

2 which are orthogonal to all the codewords in C.

C⊥ =

{
u ∈ Fn

2

∣∣∣∣ u · v = 0 for all v ∈ C
}

C⊥ is a linear block code and is called the dual code of C.

Example (3-Repetition Code)
C = {000,111}, C⊥ = ?

000 · 111 = 0 111 · 111 = 1
001 · 111 = 1 110 · 111 = 0
010 · 111 = 1 101 · 111 = 0
100 · 111 = 1 011 · 111 = 0

C⊥ = {000,011,101,110} = Single Parity Check Code
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Dimension of the Dual Code

Example (3-Repetition Code and SPC Code)
C = {000,111}, dim C = 1
C⊥ = {000,011,101,110}, dim C⊥ = 2
dim C + dim C⊥ = 1 + 2 = 3

Theorem
dim C + dim C⊥ = n

Corollary
C is an (n, k) binary linear block code⇒ C⊥ is an (n,n − k)
binary linear block code
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Parity Check Matrix of a Code

Definition
Let C be an (n, k) binary linear block code and let C⊥ be its
dual code. A generator matrix H for C⊥ is called a parity check
matrix for C.

Example (3-Repetition Code)
C = {000,111}
C⊥ = {000,011,101,110}

A generator matrix of C⊥ is H =

[
1 0 1
0 1 1

]
H is a parity check matrix of C.
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Parity Check Matrix Completely Describes a Code

Theorem
Let C be a linear block code with parity check matrix H. Then

v ∈ C ⇐⇒ v · HT = 0

Example (3-Repetition Code)

C = {000,111}, H =

[
1 0 1
0 1 1

]
Forward direction: v ∈ C ⇒ v · HT = 0

[
0 0 0

] 1 0
0 1
1 1

 =
[
0 0

]
,
[
1 1 1

] 1 0
0 1
1 1

 =
[
0 0

]
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Parity Check Matrix Completely Describes a Code

Theorem
Let C be a linear block code with parity check matrix H. Then

v ∈ C ⇐⇒ v · HT = 0

Example (3-Repetition Code)

C = {000,111}, H =

[
1 0 1
0 1 1

]
Reverse direction: v ∈ C ⇐ v · HT = 0

v · HT =
[
v1 v2 v3

] 1 0
0 1
1 1

 =
[
v1 + v3 v2 + v3

]

v · HT = 0 ⇒ v1 + v3 = 0, v2 + v3 = 0
⇒ v1 = v3, v2 = v3 ⇒ v1 = v2 = v3
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Decoding Binary Linear Block Codes

• Let a codeword x be sent through a BSC to get y,

y = x + e

where e is the error vector
• The probability of observing y given x was transmitted is

given by

Pr(y|x) = pd(x,y)(1− p)n−d(x,y)

= pwt(e)(1− p)n−wt(e)

= (1− p)n
(

p
1− p

)wt(e)

• If p < 1
2 , lower weight error vectors are more likely
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Decoding Binary Linear Block Codes

• Optimal decoder is given by

x̂ML = argminx∈Cd(x,y)
= y + êML

where êML = Most likely error vector such that y + e ∈ C.
• y + e ∈ C ⇐⇒ (y + e) · HT = 0 ⇐⇒ e · HT = y · HT

• If s = y · HT , the most likely error vector is

êML = argmin
e∈Fn

2,e·HT=s
wt(e)

• Time complexity = O
(
p(n)2k) where p is a polynomial

• For each s, the êML can be precomputed and stored
• s is 1×n− k binary vector⇒ Storage required is O(n2n−k )
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Summary



Complexity Comparison

General Block Codes
• Encoding = O(n2k )

• Decoding = O(n2k )

Linear Block Codes
• Encoding = O(nk)
• Decoding =

O(p(n)2min(k ,n−k))

Observations

• Linear structure in codes reduces encoding complexity
• Decoding complexity is still exponential
• Need for codes with low complexity decoders
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Questions? Takeaways?
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