- 1. [5 points] Let F_q be a finite field. Evaluate the sum and product of the non-zero elements of F_q .
- 2. [5 points] Construct a finite field F_8 with 8 elements. You have to write down the addition and multiplication tables for this field.
- 3. [5 points] Determine all the primitive elements of F_7 and F_{17} .
- 4. [5 points] Determine all the prime polynomials of degree 5 in $F_2[x]$.
- 5. [5 points] Let α and β be elements in a field F. If α has order m, β has order n and gcd(m,n) = 1, prove that $\alpha\beta$ has order mn.
- 6. [5 points] Let F_q be a finite field with q elements.
 - (a) For any $\beta \in F_q^*$, consider the sequence $\beta, \beta^2, \beta^3, \beta^4, \ldots$. Show that the first element to repeat in this sequence is β , i.e. there exists a positive integer n such that $\beta^i \neq \beta^j$ for $1 \leq i < j \leq n-1$ and $\beta^n = \beta$.
 - (b) Using the above result, show that all the elements in F_q are roots of the polynomial $x^q x$.
- 7. [5 points] Let \mathbb{F}_3 be the finite field with three elements. Let $\mathbb{F}_3[x]$ be the set of polynomials with coefficients in \mathbb{F}_3 .
 - (a) Find the prime polynomials of degree 1 and degree 2 in $\mathbb{F}_3[x]$.
 - (b) Let g(x) be a degree 2 prime polynomial found in the previous part. Let $R_{\mathbb{F}_{3,2}}$ be the set of remainders when polynomials in $\mathbb{F}_3[x]$ are divided by g(x). $R_{\mathbb{F}_{3,2}}$ is a field under addition and multiplication modulo g(x). Find the multiplicative inverses of all the non-zero elements in $R_{\mathbb{F}_{3,2}}$.
- 8. [5 points] Find all the minimal polynomials of the field of 9 elements.
- 9. [5 points] Let F_q be a field with p^m elements where p is a prime and m is a positive integer. Prove that the minimal polynomial of a primitive element in F_q has degree m.
- 10. [5 points] Let F_q be a field with p^m elements where p is a prime and m is a positive integer. A degree m irreducible polynomial in $\mathbb{F}_p[x]$ is said to be primitive if the smallest value of N for which it divides $x^N 1$ is $p^m 1$. Show that the minimal polynomial of a primitive element in F_q is a primitive polynomial.