Finite Fields

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 25, 2014

Fields

Definition

A set F together with two binary operations + and * is a field if

- *F* is an abelian group under + whose identity is called 0
- *F*^{*} = *F* \ {0} is an abelian group under ∗ whose identity is called 1
- For any *a*, *b*, *c* ∈ *F*

$$a*(b+c) = a*b + a*c$$

Definition

A finite field is a field with a finite cardinality.

Example

 $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ with mod *p* addition and multiplication where *p* is a prime. Such fields are called prime fields.

Some Observations

Example

- $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$
- $2^5 = 2 \mod 5, 3^5 = 3 \mod 5, 4^5 = 4 \mod 5$
- All elements of \mathbb{F}_5 are roots of $x^5 x$
- $2^2 = 4 \mod 5, 2^3 = 3 \mod 5, 2^4 = 1 \mod 5$
- $\mathbb{F}_5^* = \{1, 2, 3, 4\}$ is cyclic

Example

- $F = \{0, 1, y, y + 1\}$ under + and * modulo $y^2 + y + 1$
- $y^4 = y \mod (y^2 + y + 1), (y + 1)^4 = y + 1 \mod (y^2 + y + 1)$
- All elements of *F* are roots of $x^4 x$

•
$$(y+1)^2 = y \mod (y^2 + y + 1), (y+1)^3 = 1 \mod (y^2 + y + 1)$$

• $F^* = \{1, y, y + 1\}$ is cyclic

Field Isomorphism

Definition

Fields *F* and *G* are isomorphic if there exists a bijection $\phi: F \to G$ such that

$$\begin{aligned} \phi(\alpha + \beta) &= \phi(\alpha) \oplus \phi(\beta) \\ \phi(\alpha \star \beta) &= \phi(\alpha) \otimes \phi(\beta) \end{aligned}$$

for all $\alpha, \beta \in F$.

Example

•
$$F = \left\{ a_0 + a_1 x + a_2 x^2 \middle| a_i \in \mathbb{F}_2 \right\}$$
 under $+$ and $*$ modulo $x^3 + x + 1$
• $G = \left\{ a_0 + a_1 x + a_2 x^2 \middle| a_i \in \mathbb{F}_2 \right\}$ under $+$ and $*$ modulo $x^3 + x^2 + 1$

Uniqueness of a Prime Field

Theorem

Every field F with a prime cardinality p is isomorphic to \mathbb{F}_p Proof.

- Let F be any field with p elements where p is prime
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1 + 1, \ldots\}$
- By Lagrange's theorem, |S(1)| divides p
- Since $1 \neq 0, |S(1)| \ge 2 \implies |S(1)| = p \implies S(1) = F$
- Every element in *F* is of the form $\underbrace{1+1+\dots+1}_{i \text{ times}}$
- *F* is a field under the operations $\underbrace{1+1+\dots+1}_{i \text{ times}} + \underbrace{1+1+\dots+1}_{j \text{ times}} = \underbrace{1+1+\dots+1}_{i+j \text{ mod } p \text{ times}} \text{ and }$ $\underbrace{1+1+\dots+1}_{i \text{ times}} * \underbrace{1+1+\dots+1}_{j \text{ times}} = \underbrace{1+1+\dots+1}_{ij \text{ mod } p \text{ times}}$

Proof of *F* being Isomorphic to \mathbb{F}_p

Subfields

Definition

A nonempty subset S of a field F is called a subfield of F if

- $\alpha + \beta \in S$ for all $\alpha, \beta \in S$
- $-\alpha \in S$ for all $\alpha \in S$
- $\alpha * \beta \in S \setminus \{0\}$ for all nonzero $\alpha, \beta \in S$
- $\alpha^{-1} \in \mathcal{S} \setminus \{0\}$ for all nonzero $\alpha \in \mathcal{S}$

Example

 $F = \{0, 1, x, x + 1\}$ under + and * modulo $x^2 + x + 1$ \mathbb{F}_2 is a subfield of F

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\dots+1+1}_{p \text{ times}} = 0$$

Examples

- \mathbb{F}_2 has characteristic 2
- \mathbb{F}_5 has characteristic 5

Theorem

The characteristic of a finite field is prime

Prime Subfield of a Finite Field

Theorem

Every finite field has a prime subfield.

Examples

- \mathbb{F}_2 has prime subfield \mathbb{F}_2
- $F = \{0, 1, x, x + 1\}$ under + and * modulo $x^2 + x + 1$ has prime subfield \mathbb{F}_2

Proof.

- Let F be any field with q elements
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1 + 1, \ldots\}$
- |S(1)| = p where p is the characteristic of F
- S(1) is a subfield of F and is isomorphic to \mathbb{F}_p

Order of a Finite Field

Theorem

Any finite field has p^m elements where p is a prime and m is a positive integer.

Example

• $F = \{0, 1, x, x + 1\}$ has 2^2 elements

Proof.

- Let *F* be any field with *q* elements and characteristic *p*
- *F* has a subfield isomorphic to \mathbb{F}_{p}
- F is a vector space over \mathbb{F}_p
- *F* has a finite basis v_1, v_2, \ldots, v_m
- Every element of *F* can be written as $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_m v_m$ where $\alpha_i \in \mathbb{F}_p$

Polynomials over a Field

Definition

A nonzero polynomial over a field F is an expression

$$f(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_m x^m$$

where $f_i \in F$ and $f_m \neq 0$. If $f_m = 1$, f(x) is said to be monic.

Definition

The set of all polynomials over a field F is denoted by F[x]

Examples

- $\mathbb{F}_3 = \{0, 1, 2\}, \, x^2 + 2x \in \mathbb{F}_3[x] \text{ and is monic}$
- $x^2 + 5$ is a monic polynomial in $\mathbb{R}[x]$

Divisors of Polynomials over a Field

Definition

A polynomial $a(x) \in F[x]$ is said to be a divisor of a polynomial $b(x) \in F[x]$ if b(x) = q(x)a(x) for some $q(x) \in F[x]$

Example

 $x - i\sqrt{5}$ is a divisor of $x^2 + 5$ in $\mathbb{C}[x]$ but not in $\mathbb{R}[x]$

Definition

Every polynomial f(x) in F[x] has trivial divisors consisting of nonzero elements in F and $\alpha f(x)$ where $\alpha \in F \setminus \{0\}$

Examples

- In $\mathbb{F}_3[x]$, $x^2 + 2x$ has trivial divisors 1,2, $x^2 + 2x$, $2x^2 + x$
- In $\mathbb{F}_5[x]$, $x^2 + 2x$ has trivial divisors 1, 2, 3, 4, $x^2 + 2x$, $2x^2 + 4x$, $3x^2 + x$, $4x^2 + 3x$

Prime Polynomials

Definition

An irreducible polynomial is a polynomial of degree 1 or more which has only trivial divisors.

Examples

- In F₃[x], x² + 2x has non-trivial divisors x, x + 2 and is not irreducible
- In $\mathbb{F}_3[x]$, x + 2 has only trivial divisors and is irreducible
- In any F[x], $x + \alpha$ where $\alpha \in F$ is irreducible

Definition

A monic irreducible polynomial is called a prime polynomial.

Constructing a Field of p^m Elements

- Choose a prime polynomial g(x) of degree m in $\mathbb{F}_{p}[x]$
- Consider the set of remainders when polynomials in 𝔽_p[x] are divided by g(x)

$$\boldsymbol{R}_{\mathbb{F}_{p},m} = \left\{ \boldsymbol{r}_{0} + \boldsymbol{r}_{1}\boldsymbol{x} + \cdots + \boldsymbol{r}_{m-1}\boldsymbol{x}^{m-1} \middle| \boldsymbol{r}_{i} \in \mathbb{F}_{p} \right\}$$

- The cardinality of $R_{\mathbb{F}_{p},m}$ is p^m
- $R_{\mathbb{F}_{p},m}$ with addition and multiplication mod g(x) is a field

Examples

• $R_{\mathbb{F}_{2},2} = \{0, 1, x, x+1\}$ is a field under + and * modulo $x^{2} + x + 1$ • $R_{\mathbb{F}_{2},3} = \left\{ r_{0} + r_{1}x + r_{2}x^{2} \middle| r_{i} \in \mathbb{F}_{2} \right\}$ under + and * modulo $x^{3} + x + 1$

Factorization of Polynomials

Theorem

Every monic polynomial $f(x) \in F[x]$ can be written as a product of prime factors

$$f(x)=\prod_{i=1}^k a_i(x)$$

where each $a_i(x)$ is a prime polynomial in F[x]. The factorization is unique, up to the order of the factors.

Examples

- In $\mathbb{F}_2[x]$, $x^3 + 1 = (x+1)(x^2 + x + 1)$
- In $\mathbb{C}[x]$, $x^2 + 5 = (x + i\sqrt{5})(x i\sqrt{5})$
- In $\mathbb{R}[x]$, $x^2 + 5$ is itself a prime polynomial

Roots of Polynomials

Definition

If $f(x) \in F[x]$ has a degree 1 factor $x - \alpha$ for some $\alpha \in F$, then α is called a root of f(x)

Examples

- In $\mathbb{F}_2[x]$, $x^3 + 1$ has 1 as a root
- In $\mathbb{C}[x]$, $x^2 + 5$ has two roots $\pm i\sqrt{5}$
- In $\mathbb{R}[x]$, $x^2 + 5$ has no roots

Theorem

In any field F, a monic polynomial $f(x) \in F[x]$ of degree m can have at most m roots in F. If it does have m roots $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$, then the unique factorization of f(x) is

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_m).$$

Multiplicative Cyclic Subgroups in a Field

Theorem

In any field *F*, the multiplicative group *F*^{*} of nonzero elements has at most one cyclic subgroup of any given order *n*. If such a subgroup exists, then its elements $\{1, \beta, \beta^2, \dots, \beta^{n-1}\}$ satisfy

$$x^n-1=(x-1)(x-\beta)(x-\beta^2)\cdots(x-\beta^{n-1}).$$

Examples

- In ℝ*, cyclic subgroups of order 1 and 2 exist.
- In \mathbb{C}^* , cyclic subgroups exist for every order *n*.

Multiplicative Cyclic Subgroups in a Field

Proof of Theorem.

- Let S be a cyclic subgroup of F^* having order n.
- Then $S = \{\beta, \beta^2, \dots, \beta^{n-1}, \beta^n = 1\}$ for some $\beta \in S$.
- For every $\alpha \in S$, $\alpha^n = 1 \implies \alpha$ is a root of $x^n 1 = 0$.
- Since $x^n 1$ has at most *n* roots in *F*, *S* is unique.
- Since β^i is a root, $x \beta^i$ is a factor of $x^n 1$ for i = 1, ..., n
- By the uniqueness of factorization, we have

$$x^n-1=(x-1)(x-\beta)(x-\beta^2)\cdots(x-\beta^{n-1}).$$

Factoring $x^q - x$ over a Field F_q

- Let F_q be a finite field of order q
- For any β ∈ F^{*}_q, let S(β) = {β, β²,..., βⁿ = 1} be the cyclic subgroup of F^{*}_q generated by β
- The cardinality |S(β)| is called the multiplicative order of β and β^{|S(β)|} = 1
- By Lagrange's theorem, $|S(\beta)|$ divides $|F_q^*| = q 1$

• So for any
$$\beta \in F_q^*$$
, $\beta^{q-1} = 1$

Theorem

In a finite field F_q with q elements, the nonzero elements of F_q are the q - 1 distinct roots of $x^{q-1} - 1$

$$x^{q-1}-1=\prod_{\beta\in F_q^*}(x-\beta).$$

The elements of F_q are the q distinct roots of $x^q - x$, i.e. $x^q - x = \prod_{x \in F_q} (x - \beta)$

Factoring $x^q - x$ over a Field F_q Example $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ $(x-1)(x-2)(x-3)(x-4) = x^4 - 10x^3 + 35x^2 - 50x + 24$ $= x^4 - 1$ $x(x-1)(x-2)(x-3)(x-4) = x^5 - x$

Example

 $F = \{0, 1, y, y + 1\} \subset \mathbb{F}_2[y] \text{ under} + \text{ and } * \text{ modulo } y^2 + y + 1$

$$(x-1)(x-y)(x-y-1) = x^3 - x^2(y+1+y+1) + x(y+y+1+y^2+y) - y^2 - y = x^3 - 1 x(x-1)(x-y)(x-y-1) = x^4 - x$$

F_q^* is Cyclic

- A primitive element of F_q is an element α with $|S(\alpha)| = q 1$
- If α is a primitive element, then $\{1, \alpha, \alpha^2, \dots, \alpha^{q-2}\} = F_q^*$
- To show that F_q^* is cyclic, it is enough to show that a primitive element exists
- By Lagrange's theorem, the multiplicative order |S(β)| of every β ∈ F^{*}_q divides q − 1
- The size d of a cyclic subgroup of F_q^* divides q-1
- The number of elements having order d in a cyclic subgroup of size d is \u03c6(d)
- In F_q^* , there is at most one cyclic group of each size d
- All elements in F^{*}_q having same multiplicative order d have to belong to the same subgroup of order d

F_q^* is Cyclic

 The number of elements in F^{*}_q having order less than q - 1 is at most

$$\sum_{d:d|(q-1),d
eq q-1} \phi(d)$$

• The Euler numbers satisfy

$$q-1 = \sum_{d:d|(q-1)} \phi(d)$$

so we have

$$q-1-\sum_{d:d|(q-1),d\neq q-1}\phi(d)=\phi(q-1)$$

- F_q^* has at least $\phi(q-1)$ elements of order q-1
- Since $\phi(q-1) \ge 1$, F_q^* is cyclic

Summary of Results

- Every finite field has a prime subfield isomorphic to \mathbb{F}_p
- Any finite field has p^m elements where p is a prime and m is a positive integer.
- Given an irreducible polynomial g(x) of degree m in 𝔽_p[x], the set of remainders R_{𝔅p,m} is a field under + and * modulo g(x)
- The nonzero elements of a finite field F_q are the q 1 distinct roots of x^{q-1} - 1
- The elements of F_q are the q distinct roots of $x^q x$
- F_q^* is cyclic

Some More Results

- Every finite field F_q having characteristic p is isomorphic to a polynomial remainder field $F_{g(x)}$ where g(x) is an irreducible polynomial in $\mathbb{F}_p[x]$ of degree m
- All finite fields of same size are isomorphic
- Finite fields with p^m elements exist for every prime p and integer m ≥ 1

Questions? Takeaways?