Finite Fields

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 25, 2014

Fields

Definition

A set F together with two binary operations + and $*$ is a field if

- F is an abelian group under + whose identity is called 0
- $F^{*}=F \backslash\{0\}$ is an abelian group under $*$ whose identity is called 1
- For any $a, b, c \in F$

$$
a *(b+c)=a * b+a * c
$$

Definition

A finite field is a field with a finite cardinality.

Example

$\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ with $\bmod p$ addition and multiplication where p is a prime. Such fields are called prime fields.

Some Observations

Example

- $\mathbb{F}_{5}=\{0,1,2,3,4\}$
- $2^{5}=2 \bmod 5,3^{5}=3 \bmod 5,4^{5}=4 \bmod 5$
- All elements of \mathbb{F}_{5} are roots of $x^{5}-x$
- $2^{2}=4 \bmod 5,2^{3}=3 \bmod 5,2^{4}=1 \bmod 5$
- $\mathbb{F}_{5}^{*}=\{1,2,3,4\}$ is cyclic

Example

- $F=\{0,1, y, y+1\}$ under + and $*$ modulo $y^{2}+y+1$
- $y^{4}=y \bmod \left(y^{2}+y+1\right),(y+1)^{4}=y+1 \bmod \left(y^{2}+y+1\right)$
- All elements of F are roots of $x^{4}-x$
- $(y+1)^{2}=y \bmod \left(y^{2}+y+1\right),(y+1)^{3}=1 \bmod \left(y^{2}+y+1\right)$
- $F^{*}=\{1, y, y+1\}$ is cyclic

Field Isomorphism

Definition

Fields F and G are isomorphic if there exists a bijection
$\phi: F \rightarrow G$ such that

$$
\begin{aligned}
\phi(\alpha+\beta) & =\phi(\alpha) \oplus \phi(\beta) \\
\phi(\alpha \star \beta) & =\phi(\alpha) \otimes \phi(\beta)
\end{aligned}
$$

for all $\alpha, \beta \in F$.
Example

- $F=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{i} \in \mathbb{F}_{2}\right\}$ under + and $*$ modulo $x^{3}+x+1$
- $G=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{i} \in \mathbb{F}_{2}\right\}$ under + and $*$ modulo $x^{3}+x^{2}+1$

Uniqueness of a Prime Field

Theorem

Every field F with a prime cardinality p is isomorphic to \mathbb{F}_{p}

Proof.

- Let F be any field with p elements where p is prime
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1)=\langle 1\rangle=\{1,1+1, \ldots\}$
- By Lagrange's theorem, $|S(1)|$ divides p
- Since $1 \neq 0,|S(1)| \geq 2 \Longrightarrow|S(1)|=p \Longrightarrow S(1)=F$
- Every element in F is of the form $\underbrace{1+1+\cdots+1}_{i \text { times }}$
- F is a field under the operations

Proof of F being Isomorphic to \mathbb{F}_{p}

Consider the bijection $\phi: F \rightarrow \mathbb{F}_{p}$
$\phi(\underbrace{1+1+\cdots+1}_{i \text { times }})=i \bmod p$

$$
\begin{aligned}
\phi(\underbrace{1+\cdots+1}_{i \text { times }}+\underbrace{1+\cdots+1}_{j \text { times }}) & =\phi(\underbrace{1+\cdots+1}_{i+j \text { times }}) \\
& =(i+j) \bmod p
\end{aligned}=i \bmod p+j \bmod p-1 .
$$

$$
\begin{aligned}
\phi(\underbrace{[1+\cdots+1]}_{i \text { times }} * \underbrace{[1+\cdots+1]}_{j \text { times }}) & =\phi(\underbrace{1+\cdots+1}_{i j \text { times }}) \\
=i j \bmod p & =(i \bmod p)(j \bmod p)
\end{aligned}
$$

Subfields

Definition

A nonempty subset S of a field F is called a subfield of F if

- $\alpha+\beta \in \boldsymbol{S}$ for all $\alpha, \beta \in \boldsymbol{S}$
- $-\alpha \in S$ for all $\alpha \in S$
- $\alpha * \beta \in S \backslash\{0\}$ for all nonzero $\alpha, \beta \in S$
- $\alpha^{-1} \in S \backslash\{0\}$ for all nonzero $\alpha \in S$

Example

$F=\{0,1, x, x+1\}$ under + and $*$ modulo $x^{2}+x+1$
\mathbb{F}_{2} is a subfield of F

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1 . The characteristic of F is the smallest integer p such that

$$
\underbrace{1+1+\cdots+1+1}_{p \text { times }}=0
$$

Examples

- \mathbb{F}_{2} has characteristic 2
- \mathbb{F}_{5} has characteristic 5
- \mathbb{R} has characteristic 0

Theorem

The characteristic of a finite field is prime

Prime Subfield of a Finite Field

Theorem

Every finite field has a prime subfield.

Examples

- \mathbb{F}_{2} has prime subfield \mathbb{F}_{2}
- $F=\{0,1, x, x+1\}$ under + and $*$ modulo $x^{2}+x+1$ has prime subfield \mathbb{F}_{2}

Proof.

- Let F be any field with q elements
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1)=\langle 1\rangle=\{1,1+1, \ldots\}$
- $|S(1)|=p$ where p is the characteristic of F
- $S(1)$ is a subfield of F and is isomorphic to \mathbb{F}_{p}

Order of a Finite Field

Theorem

Any finite field has p^{m} elements where p is a prime and m is a positive integer.

Example

- $F=\{0,1, x, x+1\}$ has 2^{2} elements

Proof.

- Let F be any field with q elements and characteristic p
- F has a subfield isomorphic to \mathbb{F}_{p}
- F is a vector space over \mathbb{F}_{p}
- F has a finite basis $v_{1}, v_{2}, \ldots, v_{m}$
- Every element of F can be written as $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}$ where $\alpha_{i} \in \mathbb{F}_{p}$

Polynomials over a Field

Definition

A nonzero polynomial over a field F is an expression

$$
f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\cdots+f_{m} x^{m}
$$

where $f_{i} \in F$ and $f_{m} \neq 0$. If $f_{m}=1, f(x)$ is said to be monic.
Definition
The set of all polynomials over a field F is denoted by $F[x]$
Examples

- $\mathbb{F}_{3}=\{0,1,2\}, x^{2}+2 x \in \mathbb{F}_{3}[x]$ and is monic
- $x^{2}+5$ is a monic polynomial in $\mathbb{R}[x]$

Divisors of Polynomials over a Field

Definition

A polynomial $a(x) \in F[x]$ is said to be a divisor of a polynomial $b(x) \in F[x]$ if $b(x)=q(x) a(x)$ for some $q(x) \in F[x]$

Example

$x-i \sqrt{5}$ is a divisor of $x^{2}+5$ in $\mathbb{C}[x]$ but not in $\mathbb{R}[x]$
Definition
Every polynomial $f(x)$ in $F[x]$ has trivial divisors consisting of nonzero elements in F and $\alpha f(x)$ where $\alpha \in F \backslash\{0\}$

Examples

- $\operatorname{In} \mathbb{F}_{3}[x], x^{2}+2 x$ has trivial divisors $1,2, x^{2}+2 x, 2 x^{2}+x$
- In $\mathbb{F}_{5}[x], x^{2}+2 x$ has trivial divisors $1,2,3,4, x^{2}+2 x$, $2 x^{2}+4 x, 3 x^{2}+x, 4 x^{2}+3 x$

Prime Polynomials

Definition

An irreducible polynomial is a polynomial of degree 1 or more which has only trivial divisors.

Examples

- $\ln \mathbb{F}_{3}[x], x^{2}+2 x$ has non-trivial divisors $x, x+2$ and is not irreducible
- $\ln \mathbb{F}_{3}[x], x+2$ has only trivial divisors and is irreducible
- In any $F[x], x+\alpha$ where $\alpha \in F$ is irreducible

Definition

A monic irreducible polynomial is called a prime polynomial.

Constructing a Field of p^{m} Elements

- Choose a prime polynomial $g(x)$ of degree m in $\mathbb{F}_{p}[x]$
- Consider the set of remainders when polynomials in $\mathbb{F}_{p}[x]$ are divided by $g(x)$

$$
R_{\mathbb{F}_{p}, m}=\left\{r_{0}+r_{1} x+\cdots+r_{m-1} x^{m-1} \mid r_{i} \in \mathbb{F}_{p}\right\}
$$

- The cardinality of $R_{\mathbb{F}_{p}, m}$ is p^{m}
- $R_{\mathbb{F}_{p}, m}$ with addition and multiplication $\bmod g(x)$ is a field

Examples

- $R_{\mathbb{F}_{2}, 2}=\{0,1, x, x+1\}$ is a field under + and $*$ modulo $x^{2}+x+1$
- $R_{\mathbb{F}_{2}, 3}=\left\{r_{0}+r_{1} x+r_{2} x^{2} \mid r_{i} \in \mathbb{F}_{2}\right\}$ under + and $*$ modulo

$$
x^{3}+x+1
$$

Factorization of Polynomials

Theorem

Every monic polynomial $f(x) \in F[x]$ can be written as a product of prime factors

$$
f(x)=\prod_{i=1}^{k} a_{i}(x)
$$

where each $a_{i}(x)$ is a prime polynomial in $F[x]$. The factorization is unique, up to the order of the factors.

Examples

- $\ln \mathbb{F}_{2}[x], x^{3}+1=(x+1)\left(x^{2}+x+1\right)$
- In $\mathbb{C}[x], x^{2}+5=(x+i \sqrt{5})(x-i \sqrt{5})$
- In $\mathbb{R}[x], x^{2}+5$ is itself a prime polynomial

Roots of Polynomials

Definition

If $f(x) \in F[x]$ has a degree 1 factor $x-\alpha$ for some $\alpha \in F$, then α is called a root of $f(x)$

Examples

- $\ln \mathbb{F}_{2}[x], x^{3}+1$ has 1 as a root
- In $\mathbb{C}[x], x^{2}+5$ has two roots $\pm i \sqrt{5}$
- In $\mathbb{R}[x], x^{2}+5$ has no roots

Theorem

In any field F, a monic polynomial $f(x) \in F[x]$ of degree m can have at most m roots in F. If it does have m roots $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$, then the unique factorization of $f(x)$ is

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{m}\right) .
$$

Multiplicative Cyclic Subgroups in a Field

Theorem

In any field F, the multiplicative group F^{*} of nonzero elements has at most one cyclic subgroup of any given order n. If such a subgroup exists, then its elements $\left\{1, \beta, \beta^{2}, \ldots, \beta^{n-1}\right\}$ satisfy

$$
x^{n}-1=(x-1)(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{n-1}\right) .
$$

Examples

- In \mathbb{R}^{*}, cyclic subgroups of order 1 and 2 exist.
- $\operatorname{In} \mathbb{C}^{*}$, cyclic subgroups exist for every order n.

Multiplicative Cyclic Subgroups in a Field

Proof of Theorem.

- Let S be a cyclic subgroup of F^{*} having order n.
- Then $S=\left\{\beta, \beta^{2}, \ldots, \beta^{n-1}, \beta^{n}=1\right\}$ for some $\beta \in S$.
- For every $\alpha \in S, \alpha^{n}=1 \Longrightarrow \alpha$ is a root of $x^{n}-1=0$.
- Since $x^{n}-1$ has at most n roots in F, S is unique.
- Since β^{i} is a root, $x-\beta^{i}$ is a factor of $x^{n}-1$ for $i=1, \ldots, n$
- By the uniqueness of factorization, we have

$$
x^{n}-1=(x-1)(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{n-1}\right)
$$

Factoring $x^{q}-x$ over a Field F_{q}

- Let F_{q} be a finite field of order q
- For any $\beta \in F_{q}^{*}$, let $S(\beta)=\left\{\beta, \beta^{2}, \ldots, \beta^{n}=1\right\}$ be the cyclic subgroup of F_{q}^{*} generated by β
- The cardinality $|S(\beta)|$ is called the multiplicative order of β and $\beta^{|S(\beta)|}=1$
- By Lagrange's theorem, $|S(\beta)|$ divides $\left|F_{q}^{*}\right|=q-1$
- So for any $\beta \in F_{q}^{*}, \beta^{q-1}=1$

Theorem
In a finite field F_{q} with q elements, the nonzero elements of F_{q} are the $q-1$ distinct roots of $x^{q-1}-1$

$$
x^{q-1}-1=\prod_{\beta \in F_{q}^{*}}(x-\beta)
$$

The elements of F_{q} are the q distinct roots of $x^{q}-x$, i.e.
$x^{q}-x=\prod_{x \in F_{q}}(x-\beta)$

Factoring $x^{q}-x$ over a Field F_{q}

Example
$\mathbb{F}_{5}=\{0,1,2,3,4\}$

$$
\begin{aligned}
(x-1)(x-2)(x-3)(x-4) & =x^{4}-10 x^{3}+35 x^{2}-50 x+24 \\
& =x^{4}-1 \\
x(x-1)(x-2)(x-3)(x-4) & =x^{5}-x
\end{aligned}
$$

Example
$F=\{0,1, y, y+1\} \subset \mathbb{F}_{2}[y]$ under + and $*$ modulo $y^{2}+y+1$

$$
\begin{aligned}
(x-1)(x-y)(x-y-1)= & x^{3}-x^{2}(y+1+y+1) \\
& +x\left(y+y+1+y^{2}+y\right) \\
& -y^{2}-y \\
= & x^{3}-1 \\
x(x-1)(x-y)(x-y-1)= & x^{4}-x
\end{aligned}
$$

F_{q}^{*} is Cyclic

- A primitive element of F_{q} is an element α with $|S(\alpha)|=q-1$
- If α is a primitive element, then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}\right\}=F_{q}^{*}$
- To show that F_{q}^{*} is cyclic, it is enough to show that a primitive element exists
- By Lagrange's theorem, the multiplicative order $|S(\beta)|$ of every $\beta \in F_{q}^{*}$ divides $q-1$
- The size d of a cyclic subgroup of F_{q}^{*} divides $q-1$
- The number of elements having order d in a cyclic subgroup of size d is $\phi(d)$
- In F_{q}^{*}, there is at most one cyclic group of each size d
- All elements in F_{q}^{*} having same multiplicative order d have to belong to the same subgroup of order d

F_{q}^{*} is Cyclic

- The number of elements in F_{q}^{*} having order less than $q-1$ is at most

$$
\sum_{d: d \mid(q-1), d \neq q-1} \phi(d)
$$

- The Euler numbers satisfy

$$
q-1=\sum_{d: d \mid(q-1)} \phi(d)
$$

so we have

$$
q-1-\sum_{d: d \mid(q-1), d \neq q-1} \phi(d)=\phi(q-1)
$$

- F_{q}^{*} has at least $\phi(q-1)$ elements of order $q-1$
- Since $\phi(q-1) \geq 1, F_{q}^{*}$ is cyclic

Summary of Results

- Every finite field has a prime subfield isomorphic to \mathbb{F}_{p}
- Any finite field has p^{m} elements where p is a prime and m is a positive integer.
- Given an irreducible polynomial $g(x)$ of degree m in $\mathbb{F}_{p}[x]$, the set of remainders $R_{\mathbb{F}_{p}, m}$ is a field under + and $*$ modulo $g(x)$
- The nonzero elements of a finite field F_{q} are the $q-1$ distinct roots of $x^{q-1}-1$
- The elements of F_{q} are the q distinct roots of $x^{q}-x$
- F_{q}^{*} is cyclic

Some More Results

- Every finite field F_{q} having characteristic p is isomorphic to a polynomial remainder field $F_{g(x)}$ where $g(x)$ is an irreducible polynomial in $\mathbb{F}_{p}[x]$ of degree m
- All finite fields of same size are isomorphic
- Finite fields with p^{m} elements exist for every prime p and integer $m \geq 1$

Questions? Takeaways?

