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Fields

Definition
A set F together with two binary operations + and ∗ is a field if
• F is an abelian group under + whose identity is called 0
• F ∗ = F \ {0} is an abelian group under ∗ whose identity is

called 1
• For any a,b, c ∈ F

a ∗ (b + c) = a ∗ b + a ∗ c

Definition
A finite field is a field with a finite cardinality.

Example
Fp = {0,1,2, . . . ,p − 1} with mod p addition and multiplication
where p is a prime. Such fields are called prime fields.
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Some Observations

Example

• F5 = {0, 1, 2, 3, 4}
• 25 = 2 mod 5, 35 = 3 mod 5, 45 = 4 mod 5

• All elements of F5 are roots of x5 − x

• 22 = 4 mod 5, 23 = 3 mod 5, 24 = 1 mod 5

• F∗
5 = {1, 2, 3, 4} is cyclic

Example

• F = {0, 1, y , y + 1} under + and ∗ modulo y2 + y + 1

• y4 = y mod (y2 + y + 1), (y + 1)4 = y + 1 mod (y2 + y + 1)

• All elements of F are roots of x4 − x

• (y + 1)2 = y mod (y2 + y + 1), (y + 1)3 = 1 mod (y2 + y + 1)

• F∗ = {1, y , y + 1} is cyclic
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Field Isomorphism

Definition
Fields F and G are isomorphic if there exists a bijection
φ : F → G such that

φ(α+ β) = φ(α)⊕ φ(β)
φ(α ? β) = φ(α)⊗ φ(β)

for all α, β ∈ F .

Example

• F =

{
a0 + a1x + a2x2

∣∣∣∣ai ∈ F2

}
under + and ∗ modulo x3 + x + 1

• G =

{
a0 + a1x + a2x2

∣∣∣∣ai ∈ F2

}
under + and ∗ modulo x3 + x2 + 1
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Uniqueness of a Prime Field

Theorem
Every field F with a prime cardinality p is isomorphic to Fp

Proof.

• Let F be any field with p elements where p is prime
• F has a multiplicative identity 1
• Consider the additive subgroup S(1) = 〈1〉 = {1,1 + 1, . . .}
• By Lagrange’s theorem, |S(1)| divides p
• Since 1 6= 0, |S(1)| ≥ 2 =⇒ |S(1)| = p =⇒ S(1) = F
• Every element in F is of the form 1 + 1 + · · ·+ 1︸ ︷︷ ︸

i times

• F is a field under the operations
1 + 1 + · · ·+ 1︸ ︷︷ ︸

i times

+1 + 1 + · · ·+ 1︸ ︷︷ ︸
j times

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
i+j mod p times

and

1 + 1 + · · ·+ 1︸ ︷︷ ︸
i times

∗1 + 1 + · · ·+ 1︸ ︷︷ ︸
j times

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ij mod p times
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Proof of F being Isomorphic to Fp

Consider the bijection φ : F → Fp

φ

1 + 1 + · · ·+ 1︸ ︷︷ ︸
i times

 = i mod p

φ

1 + · · ·+ 1︸ ︷︷ ︸
i times

+1 + · · ·+ 1︸ ︷︷ ︸
j times

 = φ

1 + · · ·+ 1︸ ︷︷ ︸
i+j times


= (i + j) mod p = i mod p + j mod p

φ

[1 + · · ·+ 1]︸ ︷︷ ︸
i times

∗ [1 + · · ·+ 1]︸ ︷︷ ︸
j times

 = φ

1 + · · ·+ 1︸ ︷︷ ︸
ij times


= ij mod p = (i mod p) (j mod p)
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Subfields

Definition
A nonempty subset S of a field F is called a subfield of F if
• α+ β ∈ S for all α, β ∈ S
• −α ∈ S for all α ∈ S
• α ∗ β ∈ S \ {0} for all nonzero α, β ∈ S
• α−1 ∈ S \ {0} for all nonzero α ∈ S

Example
F = {0,1, x , x + 1} under + and ∗ modulo x2 + x + 1
F2 is a subfield of F
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Characteristic of a Field

Definition
Let F be a field with multiplicative identity 1. The characteristic
of F is the smallest integer p such that

1 + 1 + · · ·+ 1 + 1︸ ︷︷ ︸
p times

= 0

Examples

• F2 has characteristic 2
• F5 has characteristic 5
• R has characteristic 0

Theorem
The characteristic of a finite field is prime
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Prime Subfield of a Finite Field

Theorem
Every finite field has a prime subfield.

Examples

• F2 has prime subfield F2

• F = {0,1, x , x + 1} under + and ∗ modulo x2 + x + 1 has
prime subfield F2

Proof.

• Let F be any field with q elements
• F has a multiplicative identity 1
• Consider the additive subgroup S(1) = 〈1〉 = {1,1 + 1, . . .}
• |S(1)| = p where p is the characteristic of F
• S(1) is a subfield of F and is isomorphic to Fp
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Order of a Finite Field

Theorem
Any finite field has pm elements where p is a prime and m is a
positive integer.

Example

• F = {0,1, x , x + 1} has 22 elements

Proof.

• Let F be any field with q elements and characteristic p
• F has a subfield isomorphic to Fp

• F is a vector space over Fp

• F has a finite basis v1, v2, . . . , vm

• Every element of F can be written as
α1v1 + α2v2 + · · ·+ αmvm where αi ∈ Fp
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Polynomials over a Field

Definition
A nonzero polynomial over a field F is an expression

f (x) = f0 + f1x + f2x2 + · · ·+ fmxm

where fi ∈ F and fm 6= 0. If fm = 1, f (x) is said to be monic.

Definition
The set of all polynomials over a field F is denoted by F [x ]

Examples

• F3 = {0,1,2}, x2 + 2x ∈ F3[x ] and is monic
• x2 + 5 is a monic polynomial in R[x ]
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Divisors of Polynomials over a Field

Definition
A polynomial a(x) ∈ F [x ] is said to be a divisor of a polynomial
b(x) ∈ F [x ] if b(x) = q(x)a(x) for some q(x) ∈ F [x ]

Example
x − i

√
5 is a divisor of x2 + 5 in C[x ] but not in R[x ]

Definition
Every polynomial f (x) in F [x ] has trivial divisors consisting of
nonzero elements in F and αf (x) where α ∈ F \ {0}

Examples

• In F3[x ], x2 + 2x has trivial divisors 1,2, x2 + 2x , 2x2 + x
• In F5[x ], x2 + 2x has trivial divisors 1, 2, 3, 4, x2 + 2x ,

2x2 + 4x , 3x2 + x , 4x2 + 3x
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Prime Polynomials

Definition
An irreducible polynomial is a polynomial of degree 1 or more
which has only trivial divisors.

Examples

• In F3[x ], x2 + 2x has non-trivial divisors x , x + 2 and is not
irreducible

• In F3[x ], x + 2 has only trivial divisors and is irreducible
• In any F [x ], x + α where α ∈ F is irreducible

Definition
A monic irreducible polynomial is called a prime polynomial.
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Constructing a Field of pm Elements

• Choose a prime polynomial g(x) of degree m in Fp[x ]
• Consider the set of remainders when polynomials in Fp[x ]

are divided by g(x)

RFp,m =

{
r0 + r1x + · · ·+ rm−1xm−1

∣∣∣∣ri ∈ Fp

}
• The cardinality of RFp,m is pm

• RFp,m with addition and multiplication mod g(x) is a field

Examples

• RF2,2 = {0,1, x , x + 1} is a field under + and ∗ modulo
x2 + x + 1

• RF2,3 =

{
r0 + r1x + r2x2

∣∣∣∣ri ∈ F2

}
under + and ∗ modulo

x3 + x + 1
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Factorization of Polynomials

Theorem
Every monic polynomial f (x) ∈ F [x ] can be written as a product
of prime factors

f (x) =
k∏

i=1

ai(x)

where each ai(x) is a prime polynomial in F [x ]. The
factorization is unique, up to the order of the factors.

Examples

• In F2[x ], x3 + 1 = (x + 1)(x2 + x + 1)
• In C[x ], x2 + 5 = (x + i

√
5)(x − i

√
5)

• In R[x ], x2 + 5 is itself a prime polynomial
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Roots of Polynomials

Definition
If f (x) ∈ F [x ] has a degree 1 factor x − α for some α ∈ F , then
α is called a root of f (x)

Examples

• In F2[x ], x3 + 1 has 1 as a root
• In C[x ], x2 + 5 has two roots ±i

√
5

• In R[x ], x2 + 5 has no roots

Theorem
In any field F , a monic polynomial f (x) ∈ F [x ] of degree m can
have at most m roots in F . If it does have m roots
{α1, α2, . . . , αm}, then the unique factorization of f (x) is

f (x) = (x − α1)(x − α2) · · · (x − αm).
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Multiplicative Cyclic Subgroups in a Field

Theorem
In any field F , the multiplicative group F ∗ of nonzero elements
has at most one cyclic subgroup of any given order n. If such a
subgroup exists, then its elements

{
1, β, β2, . . . , βn−1} satisfy

xn − 1 = (x − 1)(x − β)(x − β2) · · · (x − βn−1).

Examples

• In R∗, cyclic subgroups of order 1 and 2 exist.
• In C∗, cyclic subgroups exist for every order n.
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Multiplicative Cyclic Subgroups in a Field

Proof of Theorem.

• Let S be a cyclic subgroup of F ∗ having order n.
• Then S =

{
β, β2, . . . , βn−1, βn = 1

}
for some β ∈ S.

• For every α ∈ S, αn = 1 =⇒ α is a root of xn − 1 = 0.
• Since xn − 1 has at most n roots in F , S is unique.
• Since β i is a root, x − β i is a factor of xn − 1 for i = 1, . . . ,n
• By the uniqueness of factorization, we have

xn − 1 = (x − 1)(x − β)(x − β2) · · · (x − βn−1).
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Factoring xq − x over a Field Fq

• Let Fq be a finite field of order q
• For any β ∈ F ∗q , let S(β) = {β, β2, . . . , βn = 1} be the cyclic

subgroup of F ∗q generated by β
• The cardinality |S(β)| is called the multiplicative order of β

and β|S(β)| = 1
• By Lagrange’s theorem, |S(β)| divides |F ∗q | = q − 1
• So for any β ∈ F ∗q , βq−1 = 1

Theorem
In a finite field Fq with q elements, the nonzero elements of Fq
are the q − 1 distinct roots of xq−1 − 1

xq−1 − 1 =
∏
β∈F∗

q

(x − β).

The elements of Fq are the q distinct roots of xq − x, i.e.
xq − x =

∏
x∈Fq

(x − β)
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Factoring xq − x over a Field Fq

Example
F5 = {0,1,2,3,4}

(x − 1)(x − 2)(x − 3)(x − 4) = x4 − 10x3 + 35x2 − 50x + 24
= x4 − 1

x(x − 1)(x − 2)(x − 3)(x − 4) = x5 − x

Example
F = {0,1, y , y + 1} ⊂ F2[y ] under + and ∗ modulo y2 + y + 1

(x − 1)(x − y)(x − y − 1) = x3 − x2(y + 1 + y + 1)
+ x(y + y + 1 + y2 + y)
− y2 − y

= x3 − 1
x(x − 1)(x − y)(x − y − 1) = x4 − x
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F ∗q is Cyclic

• A primitive element of Fq is an element α with
|S(α)| = q − 1

• If α is a primitive element, then {1, α, α2, . . . , αq−2} = F ∗q
• To show that F ∗q is cyclic, it is enough to show that a

primitive element exists
• By Lagrange’s theorem, the multiplicative order |S(β)| of

every β ∈ F ∗q divides q − 1
• The size d of a cyclic subgroup of F ∗q divides q − 1
• The number of elements having order d in a cyclic

subgroup of size d is φ(d)
• In F ∗q , there is at most one cyclic group of each size d
• All elements in F ∗q having same multiplicative order d have

to belong to the same subgroup of order d
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F ∗q is Cyclic

• The number of elements in F ∗q having order less than q − 1
is at most ∑

d :d |(q−1),d 6=q−1

φ(d)

• The Euler numbers satisfy

q − 1 =
∑

d :d |(q−1)

φ(d)

so we have

q − 1−
∑

d :d |(q−1),d 6=q−1

φ(d) = φ(q − 1)

• F ∗q has at least φ(q − 1) elements of order q − 1
• Since φ(q − 1) ≥ 1, F ∗q is cyclic
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Summary of Results

• Every finite field has a prime subfield isomorphic to Fp

• Any finite field has pm elements where p is a prime and m
is a positive integer.

• Given an irreducible polynomial g(x) of degree m in Fp[x ],
the set of remainders RFp,m is a field under + and ∗
modulo g(x)

• The nonzero elements of a finite field Fq are the q − 1
distinct roots of xq−1 − 1

• The elements of Fq are the q distinct roots of xq − x
• F ∗q is cyclic
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Some More Results

• Every finite field Fq having characteristic p is isomorphic to
a polynomial remainder field Fg(x) where g(x) is an
irreducible polynomial in Fp[x ] of degree m

• All finite fields of same size are isomorphic
• Finite fields with pm elements exist for every prime p and

integer m ≥ 1
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Questions? Takeaways?
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