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Digital Modulation

Definition
The process of mapping a bit sequence to signals for
transmission over a channel.

Example (Binary Baseband PAM)
1 — p(t) and 0 — —p(t)

p(t) —p(1)




Classification of Modulation Schemes

Memoryless

o Divide bit sequence into k-bit blocks
e Map each block to a signal sp(t), 1 < m <2k
e Mapping depends only on current k-bit block

Having Memory

e Mapping depends on current k-bit block and L — 1 previous
blocks
e [ is called the constraint length

Linear
¢ Modulated signal has the form

u(t)=>_bag(t—nT)

where b,’s are the transmitted symbols and g is a fixed
waveform

Nonlinear
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Signal Space Representation



Signal Space Representation of Waveforms

e Given M finite energy waveforms, construct an
orthonormal basis

S1(1), -, sm(t) = ¢1(1), .., on (1)
—_———

Orthonormal basis

e Each s;(t) is a linear combination of the basis vectors
N
Si(t)zzsi,n¢>n(t), i=1,....M
n=1

e s;(t) is represented by the vector s; = [s;1 - S| T

e The set {s;: 1 < i < M} is called the signal space
representation or constellation



Constellation Point to Waveform




Waveform to Constellation Point

>é > f ) Si72

si(t) —

>é > f ) SI.’N71

\é > .]‘ ) Sl7N



Gram-Schmidt Orthogonalization Procedure

¢ Algorithm for calculating orthonormal basis

e Given sq(t),..., su(t) the kth basis function is
k(1)
t = —
w0= &
where

Ec — / (D) ot

e
w(t) = Sk(T)—ZCk,i¢i(T)
p

Ck,i = <3k(t)’¢izt)>7 i=1,2,....k—1



Gram-Schmidt Procedure Example

si(t) ss(t)

s2(f) s4(t)
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Gram-Schmidt Procedure Example

#1(t)

d3(t)

s V2 o o]
s 0 v2 o]
S3 V2 o 1]’
sS4 —v2 o 1]"
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Properties of Signal Space Representation
e Energy

Enm= / Sm(t)2 dt = Z|smn|2 — (||

e Inner product

11/45



Modulation Schemes



Pulse Amplitude Modulation

Signal Waveforms

where p(t) is a pulse of duration T and Ap’s denote the M
possible amplitudes.

Usually, M = 2k and amplitudes A, take the values
An=2m—-1-M, 1<m<M

Example (M=4) Ay = -3, A= —1,A3= +1,A4,= +3
Baseband PAM: p(t) is a baseband signal

Passband PAM: p(t) = g(t) cos 2rf.t where g(t) is
baseband
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Constellation for PAM

M=2

00 01 11 10
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Phase Modulation

e Complex Envelope of Signals

sm(t) = p()e) "W, 1<m<M

where p(t) is a real baseband pulse of duration T
e Passband Signals

sh(t) = Re [\@sm(t)efz”fct}
= V2p(t)cos <7T(2nl\7/,1)> cos 2rfet

—V2p(t) sin <(2rir\74_1)> sin2xfgt
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Constellation for PSK

QPSK, M = 4
01 11
.
00 10
. .
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Quadrature Amplitude Modulation

e Complex Envelope of Signals
sm(t) = (Amj + Ang)p(t), 1<m<M

where p(t) is a real baseband pulse of duration T
¢ Passband Signals

sP(t) = Re \@sm(t)efz’rfﬂ
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Constellation for QAM

16-QAM
. . .
. . .
. . .
. . .

18/45



Power Spectral Density of Digitally Modulated
Signals



PSD Definition for Digitally Modulated Signals
e Consider a real binary PAM signal
ut)= 3" buglt—nT)

where b, = +1 with equal probability and g(t) is a
baseband pulse of duration T

o PSB=F{Ay{r)} Not stationary or WSS

20/45



Cyclostationary Random Process

Definition (Cyclostationary RP)

A random process X(t) is cyclostationary with respect to time
interval T if it is statistically indistinguishable from X(t — kT) for
any integer k.

Definition (Wide Sense Cyclostationary RP)

A random process X(t) is wide sense cyclostationary with
respect to time interval T if the mean and autocorrelation
functions satisfy

mx(t) = mx(t—T) forallt,
Rx(ti,t) = Rx(ti — T, —T) forallty,t.
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Stationarizing a Cyclostationary Random Process

Theorem

Let S(t) be a cyclostationary random process with respect to
the time interval T. Suppose D ~ U[0, T| and independent of
S(t). Then S(t — D) is a stationary random process.

Proof Sketch
Let V(t) = S(t — D). We prove that V(t) ~ V(t + 7).
1 T
PlVitt+71)=vVv] = T/ P[S(ti + T —x) = v] dx
0

1 T—7

-7/ P[S(ti —y)= V] dy

-
- }/0 PIS(t —y) =] dy
— PV(t)=V]
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Stationarizing a Cyclostationary Random Process

Proof Sketch (Contd)
We prove that V(t;), V(&) ~ V(t; + 1), V(& + 7).

PV(ti +7)=wv1,V(+7) = o]
1

)
_ T/ P[S(t +7 — X) = v, S(ts + 7 — x) = va] dx
0

1 T—1

= 7 PIS(t —y) =v1,S(ta - y) = ve] dy

1 T
— T/o P[S(ti —y) = v1,S(t — y) = vo] dy
= PV(t) =w, V() = v
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Stationarizing a Wide Sense Cyclostationary RP

Theorem

Let S(t) be a wide sense cyclostationary RP with respect to the
time interval T. Suppose D ~ U[0, T| and independent of S(t).
Then S(t — D) is a wide sense stationary RP.

Proof Sketch
Let V(t) = S(t— D). We prove that my(t) is a constant function.

my(t) = E[V(t)] = E[S(t - D)] = E[E[S(t - D)| D]

E[S(t— D)|D = x] = E[S(t — x)] = ms(t — x)

T T
ELE(S(t- D)D) = 7 [ ma(t—x) =7 [ ms(y) oy
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Stationarizing a Wide Sense Cyclostationary RP

Proof Sketch (Contd)
We prove that Ry (t, ) is a function of t; — ft, = kT + ¢

Ru(ti, ) = E[v t)V*(t)] = E[S(t — D)S*(t2 — D)]
= / Rs(ty — x, b — x) dx

_ / Rs(t; — KT — x, t, — KT — x) dx
T Jo

T—e
= ;_/ Rs(t1—kT—e—y,tg—kT—€—y)dy
T
= 7 Rs(ti —to —y,—y) dy
1 T
= T/o Rs(ti —to—y,—y) dy
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Power Spectral Density of a Realization
Time windowed realizations have finite energy
XTo(t) = X(t)/[,h h](t)
272
St,(f) = Flxr,(1)

. 2
5(f) = 'STOT(f)’ (PSD Estimate)
o]

PSD of a realization
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Power Spectral Density of a Cyclostationary Process
S(H)S*(t—7) ~ S(t+ T)S*(t+ T — 7) for cyclostationary S(¢)

To
A 1

Bs(r) = Tg/_j s(t)s*(t — 7) dt

KT
1 2 N B
= I(T/KTS(t)S (t—T) dat for TO—KT

X

T1 2
= T/ D s(t+kT)s*(t+ KT — 1) at
k_,,

;
IR 1T/o E[S(t)S*(t - )] dt

]
_ 1T/o Rs(t,t — 7) dt = Ry(r)

PSD of a cyclostationary process = F[Ry/(7)]
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Power Spectral Density of a Cyclostationary Process

To obtain the PSD of a cyclostationary process

o Stationarize it
Calculate autocorrelation function of stationarized process
Calculate Fourier transform of autocorrelation

or

Calculate autocorrelation of cyclostationary process
Rs(t, t— )

Average autocorrelation between 0 and T,

Rs(r) = + [ Rs(t,t —7) dt

Calculate Fourier transform of averaged autocorrelation
Rs(7)
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Power Spectral Density of Linearly Modulated
Signals



PSD of a Linearly Modulated Signal

Consider

u(t)= > buplt—nT)

nN=—o0
u(t) is cyclostationary wrt to T if {b,} is stationary
u(t) is wide sense cyclostationary wrtto T if {b,} is WSS
Suppose Rplk] = E[bnb},_,]
Let Sp(z) = Y52 Rplk]z 7K
The PSD of u(t) is given by

Sulf) = So (e2rm) PO
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PSD of a Linearly Modulated Signal

1 T
- / Ru(t+ 7. 1) dt
0

T
1 T o 00
_ T/o S S Elbabip(t - nT +7)p*(t — mT)] ot
n=—o0 M=—00
1 o o —(m-NT
= X Y [ Elbmubhptu— KT + 7)) du
m

Kk=—oco M=—0o0 "

1 S > * *
-1y /_OO E (b xbiop(u — KT + 7)p* ()] du

k=—00

-1y Fi’b[k]/oo p(u— KT + 7)p"(u) du

k=—0o0
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PSD of a Linearly Modulated Signal

Aur) =3 Y Aokl [ plu— KT +)p(w) du

k=—c0
[ purnpwdn = PO
| pu-KT4np @ du = |P(F)Ze T

Su(f) = F[Ru(r)] = |P(f)|2 i Ry[kle 27T

k=—0o0

_ s (ejZWfT) !P(;)|2

~

where Sp(z) = > ;2

k=—00

Rb[k]ka.
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Power Spectral Density of Line Codes



Line Codes

—
—
—

—
—

Unipolar NRZ

Polar NRZ

Bipolar NRZ
Manchester

Further reading: Digital Communications, Simon Haykin,

Chapter 6
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Unipolar NRZ
Symbols independent and equally likely to be 0 or A

P (b[n] = 0) = P (b[n] = A) = %

Autocorrelation of b[n] sequence

2
5 k=0
A k#0

p(t) = ho,1(t) = P(f) = Tsinc(fT)e =
Power Spectral Density

Su(f) = ‘P( Z Ry[k]e 2T

k=—o0
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Unipolar NRZ

AT . 2 AT . > o~ —j2nkiT

—Sinc®(fT) + =, —sinc*(fT) > e
k=—o00

A2T . D A2 . D > n

—;Sinc®(fT) + ~-sinc®(fT) n;mé (f — ?>

2T A2
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Normalized PSD plot

| — Unipolar NRZ
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Polar NRZ
Symbols independent and equally likely to be —A or A

P (bln] = —A) = P (b[n] = A) = %

Autocorrelation of b[n] sequence

A k=0
Rb[k]{

0 k#0

P(f) = Tsinc(fT)e ~/=fT
Power Spectral Density

Sy(f) = A2Tsinc?(fT)
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HIRS

Normalized PSD plots

— Unipolar NRZ
—— Polar NRZ
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Manchester
Symbols independent and equally likely to be —A or A

P (b[n] = —A) = P (b[n] = A) = %

Autocorrelation of b[n] sequence

A2 k=0
Rb[k]{

0 k#0

P(f) = jTsinc ( ) sin (”fT>
Power Spectral Density

Su(f) = A2Tsinc? ('Z) sin? <7r2ﬂ-)
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Normalized PSD plots

1 T
— Unipolar NRZ
—— Polar NRZ
—— Manchester
S:!; 051 -
HIRS
0 | | |
0.5 1 1.5 2
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Bipolar NRZ

e Successive 1’s have alternating polarity

0 — Zero amplitude
1 — +Aor —A

 Probability mass function of b[n]

P(bln]=0) = %
P(bln] = -A) = %
P(bln] = A) = %

e Symbols are identically distributed but they are not
independent
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Bipolar NRZ

 Autocorrelation of b[n] sequence

A2)2 k=0
Rp[k] = { — A4 k= +1

0 otherwise

e Power Spectral Density

A2 A .
Su(f) = Tsinc?(fT) [2 - ( 2T | o —/27Tf7')]

2
= gsincz(fT) [1 — cos(2nfT)]

= APTsinc?(fT)sin?(xfT)
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Normalized PSD plots

1 T
— Unipolar NRZ
—— Polar NRZ
— Manchester
Bipolar NRZ
S 051 .
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Thanks for your attention
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