Parameter Estimation

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 25, 2012
Motivation
System Model used to Derive Optimal Receivers

\[s(t) \xrightarrow{\text{Channel}} y(t) \]

\[y(t) = s(t) + n(t) \]

- \(s(t) \): Transmitted Signal
- \(y(t) \): Received Signal
- \(n(t) \): Noise

Simplified System Model. Does Not Account For
- Propagation Delay
- Carrier Frequency Mismatch Between Transmitter and Receiver
- Clock Frequency Mismatch Between Transmitter and Receiver

In short, Lies! Why?
You want answers?
I want the truth!
You can't handle the truth!

... right at the beginning of the course. Now you can.
Why Study the Simplified System Model?

\[y(t) = s(t) + n(t) \]

- Receivers estimate propagation delay, carrier frequency and clock frequency before demodulation.
- Once these unknown parameters are estimated, the simplified system model is valid.
- Then why not study parameter estimation first?
 - Hypothesis testing is easier to learn than parameter estimation.
 - Historical reasons.
Unsimplifying the System Model

Effect of Propagation Delay

- Consider a complex baseband signal

\[s(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT) \]

and the corresponding passband signal

\[s_p(t) = \text{Re} \left[\sqrt{2} s(t) e^{j2\pi f_c t} \right] . \]

- After passing through a noisy channel which causes amplitude scaling and delay, we have

\[y_p(t) = A s_p(t - \tau) + n_p(t) \]

where \(A \) is an unknown amplitude, \(\tau \) is an unknown delay and \(n_p(t) \) is passband noise
Unsimplifying the System Model
Effect of Propagation Delay

• The delayed passband signal is

\[s_p(t - \tau) = \text{Re} \left[\sqrt{2} s(t - \tau) e^{j2\pi f_c(t - \tau)} \right] \]
\[= \text{Re} \left[\sqrt{2} s(t - \tau) e^{j\theta} e^{j2\pi f_c t} \right] \]

where \(\theta = -2\pi f_c \tau \mod 2\pi \). For large \(f_c \), \(\theta \) is modeled as uniformly distributed over \([0, 2\pi]\).

• The complex baseband representation of the received signal is then

\[y(t) = A e^{j\theta} s(t - \tau) + n(t) \]

where \(n(t) \) is complex Gaussian noise.
Unsimplifying the System Model
Effect of Carrier Offset

- Frequency of the local oscillator (LO) at the receiver differs from that of the transmitter
- Suppose the LO frequency at the transmitter is f_c

\[s_p(t) = \text{Re} \left[\sqrt{2}s(t)e^{j2\pi f_c t} \right]. \]

- Suppose that the LO frequency at the receiver is $f_c - \Delta f$
- The received passband signal is

\[y_p(t) = As_p(t - \tau) + n_p(t) \]

- The complex baseband representation of the received signal is then

\[y(t) = Ae^{j(2\pi \Delta f t + \theta)}s(t - \tau) + n(t) \]
Unsimplifying the System Model

Effect of Clock Offset

- Frequency of the clock at the receiver differs from that of the transmitter
- The clock frequency determines the sampling instants at the matched filter output
- Suppose the symbol rate at the transmitter is $\frac{1}{T}$ symbols per second
- Suppose the receiver sampling rate is $\frac{1+\delta}{T}$ symbols per second where $|\delta| \ll 1$ and δ may be positive or negative
- The actual sampling instants and ideal sampling instants will drift apart over time
The Solution

Estimate the unknown parameters τ, θ, Δf and δ

Timing Synchronization Estimation of τ
Carrier Synchronization Estimation of θ and Δf
Clock Synchronization Estimation of δ

Perform demodulation after synchronization
Parameter Estimation
Parameter Estimation

• Hypothesis testing was about making a choice between discrete states of nature
• Parameter or point estimation is about choosing from a continuum of possible states

Example
Consider the complex baseband signal below

\[y(t) = Ae^{j\theta}s(t - \tau) + n(t) \]

• The phase \(\theta \) can take any real value in the interval \([0, 2\pi)\)
• The amplitude \(A \) can be any real number
• The delay \(\tau \) can be any real number
System Model for Parameter Estimation

- Consider a family of distributions

\[Y \sim P_{\theta}, \quad \theta \in \Lambda \]

where the observation vector \(Y \in \Gamma \subseteq \mathbb{R}^n \) for \(n \in \mathbb{N} \) and \(\Lambda \subseteq \mathbb{R}^m \) is the parameter space

- Example:

\[Y = A + N \]

where \(A \) is an unknown parameter and \(N \) is a standard Gaussian RV

- The goal of parameter estimation is to find \(\theta \) given \(Y \)

- An estimator is a function from the observation space to the parameter space

\[\hat{\theta} : \Gamma \rightarrow \Lambda \]
Which is the Optimal Estimator?

• Assume there is a cost function C which quantifies the estimation error

$$C : \Lambda \times \Lambda \rightarrow \mathbb{R}$$

such that $C[a,\theta]$ is the cost of estimating the true value of θ as a

• Examples of cost functions

 Squared Error $C[a,\theta] = (a - \theta)^2$
 Absolute Error $C[a,\theta] = |a - \theta|$
 Threshold Error $C[a,\theta] = \begin{cases} 0 & \text{if } |a - \theta| \leq \Delta \\ 1 & \text{if } |a - \theta| > \Delta \end{cases}$
Which is the Optimal Estimator?

- With an estimator \(\hat{\theta} \) we associate a conditional cost or risk conditioned on \(\theta \)

\[
R_\theta(\hat{\theta}) = E_\theta \left\{ C \left[\hat{\theta}(Y), \theta \right] \right\}
\]

- Suppose that the parameter \(\theta \) is the realization of a random variable \(\Theta \)

- The average risk or Bayes risk is given by

\[
r(\hat{\theta}) = E \left\{ R_\Theta(\hat{\theta}) \right\}
\]

- The optimal estimator is the one which minimizes the Bayes risk
Which is the Optimal Estimator?

- Given that

\[R_\theta(\hat{\theta}) = E_\theta \left\{ C \left[\hat{\theta}(Y), \theta \right] \right\} = E \left\{ C \left[\hat{\theta}(Y), \Theta \right] \mid \Theta = \theta \right\} \]

the average risk or Bayes risk is given by

\[r(\hat{\theta}) = E \left\{ C \left[\hat{\theta}(Y), \Theta \right] \right\} \]

\[= E \left\{ E \left\{ C \left[\hat{\theta}(Y), \Theta \right] \mid Y \right\} \right\} \]

- The optimal estimate for \(\theta \) can be found by minimizing for each \(Y = y \) the posterior cost

\[E \left\{ C \left[\hat{\theta}(y), \Theta \right] \mid Y = y \right\} \]
Minimum-Mean-Squared-Error (MMSE) Estimation

- $C[a, \theta] = (a - \theta)^2$
- The posterior cost is given by

$$
E \left\{ (\hat{\theta}(y) - \Theta)^2 \bigg| Y = y \right\} = \left[\hat{\theta}(y) \right]^2 - 2\hat{\theta}(y)E \left\{ \Theta \bigg| Y = y \right\} + E \left\{ \Theta^2 \bigg| Y = y \right\}
$$

- The Bayes estimate is given by

$$
\hat{\theta}_{MMSE}(y) = E \left\{ \Theta \bigg| Y = y \right\}
$$
Example 1: MMSE Estimation

- Suppose X and Y are jointly Gaussian random variables
- Let the joint pdf be given by

$$p_{XY}(x, y) = \frac{1}{2\pi|\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (s - \mu)^T \Sigma^{-1} (s - \mu) \right)$$

where $s = \begin{bmatrix} x \\ y \end{bmatrix}$, $\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$

- Suppose Y is observed and we want to estimate X
- The MMSE estimate of X is

$$\hat{X}_{\text{MMSE}}(y) = \mathbb{E} \left[X \middle| Y = y \right]$$
Example 1: MMSE Estimation

- The conditional distribution of X given $Y = y$ is a Gaussian RV with mean

$$
\mu_{X|y} = \mu_x + \frac{\sigma_x}{\sigma_y} \rho (y - \mu_y)
$$

and variance

$$
\sigma^2_{X|y} = (1 - \rho^2) \sigma^2_x
$$

- Thus the MMSE estimate of X given $Y = y$ is

$$
\hat{X}_{MMSE}(y) = \mu_x + \frac{\sigma_x}{\sigma_y} \rho (y - \mu_y)
$$
Example 2: MMSE Estimation

- Suppose A is a Gaussian RV with mean μ and known variance ν^2
- Suppose we observe $Y_i, \ i = 1, 2, \ldots, M$ such that

\[Y_i = A + N_i \]

where N_i's are independent Gaussian RVs with mean 0 and known variance σ^2
- Suppose A is independent of the N_i's
- The MMSE estimate is given by

\[\hat{A}_{MMSE}(y) = \frac{M\nu^2 \hat{A}_1(y) + \mu}{M\nu^2 + 1} \]

where $\hat{A}_1(y) = \frac{1}{M} \sum_{i=1}^{M} y_i$
Minimum-Mean-Absolute-Error (MMAE) Estimation

- $C[a, \theta] = |a - \theta|$
- The Bayes estimate $\hat{\theta}_{ABS}$ is given by the median of the posterior density $p(\Theta | Y = y)$

$$\Pr\left(\Theta < t \mid Y = y\right) \leq \Pr\left(\Theta > t \mid Y = y\right), \quad t < \hat{\theta}_{ABS}(y)$$

$$\Pr\left(\Theta < t \mid Y = y\right) \geq \Pr\left(\Theta > t \mid Y = y\right), \quad t > \hat{\theta}_{ABS}(y)$$
Minimum-Mean-Absolute-Error (MMAE) Estimation

For $\Pr[X \geq 0] = 1$, $E[X] = \int_0^\infty \Pr[X > x] \, dx$

Since $|\hat{\theta}(y) - \Theta| \geq 0$

$$E \left\{ |\hat{\theta}(y) - \Theta| \mid Y = y \right\}$$

$$= \int_0^\infty \Pr \left[|\hat{\theta}(y) - \Theta| > x \mid Y = y \right] \, dx$$

$$= \int_0^\infty \Pr \left[\Theta > x + \hat{\theta}(y) \mid Y = y \right] \, dx$$

$$+ \int_0^\infty \Pr \left[\Theta < -x + \hat{\theta}(y) \mid Y = y \right] \, dx$$

$$= \int_{\hat{\theta}(y)}^\infty \Pr \left[\Theta > t \mid Y = y \right] \, dt$$

$$+ \int_{-\infty}^{\hat{\theta}(y)} \Pr \left[\Theta < t \mid Y = y \right] \, dt$$
Minimum-Mean-Absolute-Error (MMAE) Estimation

Differentiating $E \left\{ |\hat{\theta}(y) - \Theta| \big| Y = y \right\}$ wrt to $\hat{\theta}(y)$

$$\frac{\partial}{\partial \hat{\theta}(y)} E \left\{ |\hat{\theta}(y) - \Theta| \big| Y = y \right\}$$

$$= \frac{\partial}{\partial \hat{\theta}(y)} \int_{\hat{\theta}(y)}^{\infty} \Pr \left[\Theta > t \big| Y = y \right] \, dt$$

$$+ \frac{\partial}{\partial \hat{\theta}(y)} \int_{-\infty}^{\hat{\theta}(y)} \Pr \left[\Theta < t \big| Y = y \right] \, dt$$

$$= \Pr \left[\Theta < \hat{\theta}(y) \big| Y = y \right] - \Pr \left[\Theta > \hat{\theta}(y) \big| Y = y \right]$$

- The derivative is nondecreasing tending to -1 as $\hat{\theta}(y) \to -\infty$ and $+1$ as $\hat{\theta}(y) \to \infty$
- The minimum risk is achieved at the point the derivative changes sign
Minimum-Mean-Absolute-Error (MMAE) Estimation

- Thus the MMAE $\hat{\theta}_{ABS}$ is given by any value θ such that

$$\Pr(\Theta < t \mid Y = y) \leq \Pr(\Theta > t \mid Y = y), \quad t < \hat{\theta}_{ABS}(y)$$

$$\Pr(\Theta < t \mid Y = y) \geq \Pr(\Theta > t \mid Y = y), \quad t > \hat{\theta}_{ABS}(y)$$

- Why not the following expression?

$$\Pr(\Theta < \hat{\theta}_{ABS}(y) \mid Y = y) = \Pr(\Theta \geq \hat{\theta}_{ABS}(y) \mid Y = y)$$

- Why not the following expression?

$$\Pr(\Theta < \hat{\theta}_{ABS}(y) \mid Y = y) = \Pr(\Theta > \hat{\theta}_{ABS}(y) \mid Y = y)$$

- MMAE estimation for discrete distributions requires the more general expression above
Maximum A Posteriori (MAP) Estimation

- The MAP estimator is given by

\[\hat{\theta}_{MAP}(y) = \arg\max_{\theta} p \left(\theta \mid Y = y \right) \]

- It can be obtained as the optimal estimator for the threshold cost function

\[C[a, \theta] = \begin{cases}
0 & \text{if } |a - \theta| \leq \Delta \\
1 & \text{if } |a - \theta| > \Delta
\end{cases} \]

for small \(\Delta > 0 \)
For the threshold cost function, we have

\[
E \left\{ C \left[\hat{\theta}(y), \Theta \right] \bigg| Y = y \right\} = \int_{-\infty}^{\hat{\theta}(y)-\Delta} p \left(\theta \bigg| Y = y \right) d\theta + \int_{\hat{\theta}(y)+\Delta}^{\infty} p \left(\theta \bigg| Y = y \right) d\theta
\]

\[
= \int_{-\infty}^{\hat{\theta}(y)-\Delta} p \left(\theta \bigg| Y = y \right) d\theta - \int_{\hat{\theta}(y)-\Delta}^{\hat{\theta}(y)+\Delta} p \left(\theta \bigg| Y = y \right) d\theta
\]

\[
= 1 - \int_{\hat{\theta}(y)-\Delta}^{\hat{\theta}(y)+\Delta} p \left(\theta \bigg| Y = y \right) d\theta
\]

The Bayes estimate is obtained by maximizing the integral in the last equality.

\(^1\) Assume a scalar parameter \(\theta \) for illustration.
Maximum A Posteriori (MAP) Estimation

\[p(\theta|Y = y) \]

- The shaded area is the integral \(\int_{\hat{\theta}(y) - \Delta}^{\hat{\theta}(y) + \Delta} p \left(\theta \bigg| Y = y \right) d\theta \)
- To maximize this integral, the location of \(\hat{\theta}(y) \) should be chosen to be the value of \(\theta \) which maximizes \(p(\theta|Y = y) \)
Maximum A Posteriori (MAP) Estimation

\[
\hat{\theta}_{\text{MAP}}(y) = \arg\max_{\theta} p(\theta|Y=y)
\]

- This argument is not airtight as \(p(\theta|Y=y) \) may not be symmetric at the maximum
- But the MAP estimator is widely used as it is easier to compute than the MMSE or MMAE estimators
Maximum Likelihood (ML) Estimation

- The ML estimator is given by

\[\hat{\theta}_{ML}(y) = \arg\max_{\theta} p \left(Y = y \mid \theta \right) \]

- It is the same as the MAP estimator when the prior probability distribution of \(\Theta \) is uniform

- It is also used when the prior distribution is not known
Example 1: ML Estimation

- Suppose we observe $Y_i, \ i = 1, 2, \ldots, M$ such that

 $$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

 where Y_i's are independent, μ is unknown and σ^2 is known

- The ML estimate is given by

 $$\hat{\mu}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Assignment 5
Example 2: ML Estimation

- Suppose we observe Y_i, $i = 1, 2, \ldots, M$ such that

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

where Y_i's are independent, both μ and σ^2 are unknown.

- The ML estimates are given by

$$\hat{\mu}_{ML}(y) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

$$\hat{\sigma}^2_{ML}(y) = \frac{1}{M} \sum_{i=1}^{M} (y_i - \hat{\mu}_{ML}(y))^2$$

Assignment 5
Example 3: ML Estimation

- Suppose we observe $Y_i, \ i = 1, 2, \ldots, M$ such that
 $$Y_i \sim \text{Bernoulli}(p)$$
 where Y_i's are independent and p is unknown
- The ML estimate of p is given by
 $$\hat{p}_{ML}(y) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Assignment 5
Example 4: ML Estimation

• Suppose we observe Y_i, $i = 1, 2, \ldots, M$ such that

$$Y_i \sim \text{Uniform}[0, \theta]$$

where Y_i’s are independent and θ is unknown

• The ML estimate of θ is given by

$$\hat{\theta}_{ML}(y) = \max(y_1, y_2, \ldots, y_{M-1}, y_M)$$

Assignment 5
Reference

Parameter Estimation of Random Processes
ML Estimation Requires Conditional Densities

- ML estimation involves maximizing the conditional density wrt unknown parameters
- Example: $Y \sim \mathcal{N}(\theta, \sigma^2)$ where θ is known and σ^2 is unknown
 \[p \left(Y = y \Big| \theta \right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta)^2}{2\sigma^2}}\]
- Suppose the observation is the realization of a random process
 \[y(t) = Ae^{j\theta} s(t - \tau) + n(t)\]
- What is the conditional density of $y(t)$ given A, θ and τ?
Maximizing Likelihood Ratio for ML Estimation

• Consider $Y \sim \mathcal{N}(\theta, \sigma^2)$ where θ is unknown and σ^2 is known

$$p(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta)^2}{2\sigma^2}}$$

• Let $q(y)$ be the density of a Gaussian with distribution $\mathcal{N}(0, \sigma^2)$

$$q(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$$

• The ML estimate of θ is obtained as

$$\hat{\theta}_{ML}(y) = \arg\max_\theta p(y|\theta) = \arg\max_\theta \frac{p(y|\theta)}{q(y)} = \arg\max_\theta L(y|\theta)$$

where $L(y|\theta)$ is called the likelihood ratio
Likelihood Ratio and Hypothesis Testing

- The likelihood ratio $L(y|\theta)$ is the ML decision statistic for the following binary hypothesis testing problem

 $H_1 : Y \sim \mathcal{N}(\theta, \sigma^2)$

 $H_0 : Y \sim \mathcal{N}(0, \sigma^2)$

 where θ is assumed to be known

- H_0 is a dummy hypothesis which makes calculation of the ML estimator easy for random processes
Likelihood Ratio of a Signal in AWGN

- Let $H_s(\theta)$ be the hypothesis corresponding the following received signal

$$H_s(\theta) : y(t) = s_\theta(t) + n(t)$$

where θ can be a vector parameter

- Define a noise-only dummy hypothesis H_0

$$H_0 : y(t) = n(t)$$

- Define Z and $y_\perp(t)$ as follows

$$Z = \langle y, s_\theta \rangle$$

$$y_\perp(t) = y(t) - \langle y, s_\theta \rangle \frac{s_\theta(t)}{\|s_\theta\|^2}$$

- Z and $y_\perp(t)$ completely characterize $y(t)$
Likelihood Ratio of a Signal in AWGN

- Under both hypotheses $y(t)$ is equal to $n(t)$ where

$$n(t) = n(t) - \langle n, s_\theta \rangle \frac{s_\theta(t)}{||s_\theta||^2}$$

- $n(t)$ is independent of the noise component in Z and has the same distribution under both hypotheses
- $n(t)$ is irrelevant for this binary hypothesis testing problem
- The likelihood ratio of $y(t)$ equals the likelihood ratio of Z under the following hypothesis testing problem

$$H_s(\theta) : Z \sim \mathcal{N}(||s_\theta||^2, \sigma^2||s_\theta||^2)$$

$$H_0(\theta) : Z \sim \mathcal{N}(0, \sigma^2||s_\theta||^2)$$
Likelihood Ratio of Signals in AWGN

- The likelihood ratio of signals in real AWGN is

\[
L(y|s_\theta) = \exp\left(\frac{1}{\sigma^2} \left[\langle y, s_\theta \rangle - \frac{\|s_\theta\|^2}{2}\right]\right)
\]

- The likelihood ratio of signals in complex AWGN is

\[
L(y|s_\theta) = \exp\left(\frac{1}{\sigma^2} \left[\text{Re}(\langle y, s_\theta \rangle) - \frac{\|s_\theta\|^2}{2}\right]\right)
\]

- Maximizing these likelihood ratios as functions of \(\theta\) results in the ML estimator
Thanks for your attention