Digital Modulation

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 19, 2013

Digital Modulation

Definition

The process of mapping a bit sequence to signals for transmission over a channel.

Digital Modulation

Example (Binary Baseband PAM)

 $1 \rightarrow p(t)$ and $0 \rightarrow -p(t)$

Classification of Modulation Schemes

- Memoryless
 - Divide bit sequence into k-bit blocks
 - Map each block to a signal $s_m(t)$, $1 \le m \le 2^k$
 - Mapping depends only on current *k*-bit block
- Having Memory
 - Mapping depends on current k-bit block and L − 1 previous blocks
 - L is called the constraint length
- Linear
 - Complex baseband representation of transmitted signal has the form

$$u(t) = \sum_{n} b_{n}g(t - nT)$$

where b_n 's are the transmitted symbols and g is a fixed baseband waveform

Nonlinear

Signal Space Representation

Signal Space Representation of Waveforms

Given M finite energy waveforms, construct an orthonormal basis

$$s_1(t), \dots, s_M(t) o \underbrace{\phi_1(t), \dots, \phi_N(t)}_{ ext{Orthonormal basis}}$$

$$\langle \phi_i, \phi_j \rangle = \int_{-\infty}^{\infty} \phi_i(t) \phi_j^*(t) dt = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

• Each $s_i(t)$ is a linear combination of the basis vectors

$$s_i(t) = \sum_{n=1}^N s_{i,n} \phi_n(t), \quad i = 1, \dots, M$$

- $s_i(t)$ is represented by the vector $\mathbf{s}_i = \begin{bmatrix} s_{i,1} & \cdots & s_{i,N} \end{bmatrix}^T$
- The set {s_i : 1 ≤ i ≤ M} is called the signal space representation or constellation

Constellation Point to Waveform

Waveform to Constellation Point

Gram-Schmidt Orthogonalization Procedure

- Algorithm for calculating orthonormal basis for $s_1(t), \ldots, s_M(t)$
- Consider M = 1

$$\phi_1(t) = \frac{s_1(t)}{\|s_1\|}$$

where $||s_1||^2 = \langle s_1, s_1 \rangle$

• Consider M=2

$$\phi_1(t) = \frac{s_1(t)}{\|s_1\|}, \quad \phi_2(t) = \frac{\gamma(t)}{\|\gamma\|}$$

where $\gamma(t) = s_2(t) - \langle s_2, \phi_1 \rangle \phi_1(t)$

Consider M = 3

$$\phi_1(t) = \frac{s_1(t)}{\|s_1\|}, \quad \phi_2(t) = \frac{\gamma_1(t)}{\|\gamma_1\|}, \quad \phi_3(t) = \frac{\gamma_2(t)}{\|\gamma_2\|}$$

where

$$\gamma_1(t) = s_2(t) - \langle s_2, \phi_1 \rangle \phi_1(t)
\gamma_2(t) = s_3(t) - \langle s_3, \phi_1 \rangle \phi_1(t) - \langle s_3, \phi_2 \rangle \phi_2(t)$$

Gram-Schmidt Orthogonalization Procedure

• In general, given $s_1(t), \ldots, s_M(t)$ the kth basis function is

$$\phi_k(t) = \frac{\gamma_k(t)}{\|\gamma_k\|}$$

where

$$\gamma_k(t) = s_k(t) - \sum_{i=1}^{k-1} \langle s_k, \phi_i
angle \phi_i(t)$$

is not the zero function

• If $\gamma_k(t)$ is zero, $s_k(t)$ is a linear combination of $\phi_1(t), \ldots, \phi_{k-1}(t)$. It does not contribute to the basis.

Gram-Schmidt Procedure Example

Gram-Schmidt Procedure Example

$$\mathbf{s}_{1} = \begin{bmatrix} \sqrt{2} & 0 & 0 \end{bmatrix}^{T}$$
 $\mathbf{s}_{2} = \begin{bmatrix} 0 & \sqrt{2} & 0 \end{bmatrix}^{T}$
 $\mathbf{s}_{3} = \begin{bmatrix} \sqrt{2} & 0 & 1 \end{bmatrix}^{T}$
 $\mathbf{s}_{4} = \begin{bmatrix} -\sqrt{2} & 0 & 1 \end{bmatrix}^{T}$

Properties of Signal Space Representation

Energy

$$E_m = \int_{-\infty}^{\infty} |s_m(t)|^2 dt = \sum_{n=1}^{N} |s_{m,n}|^2 = \|\mathbf{s}_m\|^2$$

Inner product

$$\langle s_i(t), s_j(t) \rangle = \langle \mathbf{s}_i, \mathbf{s}_j \rangle$$

Modulation Schemes

Pulse Amplitude Modulation

Signal Waveforms

$$s_m(t) = A_m p(t), \quad 1 \leq m \leq M$$

where p(t) is a pulse of duration T and A_m 's denote the M possible amplitudes.

-A

• Example M = 2, p(t) is a real pulse $A_1 = -A$, $A_2 = A$ for a real number A

Pulse Amplitude Modulation

• Example M = 4, p(t) is a real pulse

$$\textit{A}_{1} = -3\textit{A}, \textit{A}_{2} = -\textit{A}, \textit{A}_{3} = \textit{A}, \textit{A}_{4} = 3\textit{A}$$

Phase Modulation

Complex envelope of phase modulated signals

$$s_m(t) = p(t)e^{j\frac{\pi(2m-1)}{M}}, \quad 1 \le m \le M$$

where p(t) is a real baseband pulse of duration T

Corresponding passband signals

$$\begin{split} s_m^{\rho}(t) &= \operatorname{Re}\left[\sqrt{2}s_m(t)e^{j2\pi f_c t}\right] \\ &= \sqrt{2}\rho(t)\cos\left(\frac{\pi(2m-1)}{M}\right)\cos 2\pi f_c t \\ &-\sqrt{2}\rho(t)\sin\left(\frac{\pi(2m-1)}{M}\right)\sin 2\pi f_c t \end{split}$$

Constellation for PSK

Quadrature Amplitude Modulation

Complex envelope of QAM signals

$$s_m(t) = (A_{m,i} + jA_{m,q})p(t), \quad 1 \leq m \leq M$$

where p(t) is a real baseband pulse of duration T

· Corresponding passband signals

$$s_m^p(t) = \operatorname{Re}\left[\sqrt{2}s_m(t)e^{j2\pi f_c t}\right]$$

= $\sqrt{2}A_{m,i}p(t)\cos 2\pi f_c t - \sqrt{2}A_{m,q}p(t)\sin 2\pi f_c t$

Constellation for QAM

Thanks for your attention