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Digital Modulation
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Definition
The process of mapping a bit sequence to signals for transmission over a
channel.
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Digital Modulation

Example (Binary Baseband PAM)
1 — p(t)and 0 — —p(t)

p(t) =p(1)
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Classification of Modulation Schemes

Memoryless

o Divide bit sequence into k-bit blocks
e Map each block to a signal s,(t), 1 <m< ok
e Mapping depends only on current k-bit block

Having Memory

e Mapping depends on current k-bit block and L — 1 previous blocks
e [ is called the constraint length

Linear
e Complex baseband representation of transmitted signal has the

form
u(t) = bag(t— nT)

where by’s are the transmitted symbols and g is a fixed baseband
waveform

Nonlinear



Signal Space Representation



Signal Space Representation of Waveforms

e Given M finite energy waveforms, construct an orthonormal basis

31(1), ey SM(t) — ¢1(f), .. .,qu(t)
—_—

Orthonormal basis

- ) § i
(¢i, &) = [ #i(t) a5 (1) dt:{ 0 Lt,her\{vise

e Each si(t) is a linear combination of the basis vectors
N

sty = sinpn(t), i=1,....M
n=1

e 5(t) is represented by the vector s; = [si1 -~ sin]’

e Theset {s;: 1 <i< M} is called the signal space representation or
constellation



Constellation Point to Waveform
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Waveform to Constellation Point
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Gram-Schmidt Orthogonalization Procedure

e Algorithm for calculating orthonormal basis for s¢(f), ..., su(t)
e Consider M =1

¢1(t) HS(IR
where ||s1||> = (s1, 51)
e Consider M =2
s1(1) (1)
HO=TJs 20 =15
where (t) = s2(t) — (82, d1) 1 (1)
e Consider M =3
I0) 7(t) _ ()
PO= el 2O = g 0=

where

y1(t) = S2(t) — (S2, P1) 91 (1)
72(t) = 83(t) — (83, P1)P1(1) — (83, P2)P2(1)
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Gram-Schmidt Orthogonalization Procedure

e In general, given s1(t), ..., su(t) the kth basis function is
k(1)
ok(f) =
O =
where
k—1

() = sk(t) = D (k. di)i(1)

i=1
is not the zero function

o [f (1) is zero, sk(t) is a linear combination of ¢1(t), ..., ¢k—1(t). It does
not contribute to the basis.
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Gram-Schmidt Procedure Example

(1) s3(t)
1 1
3 t
2 t
e
(1) sa(t)
1 1
2 t 3 t
1 e

11/21



ES

Gram-Schmidt Procedure Example
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Properties of Signal Space Representation
e Energy

En= [ Jsn(t) ot - Z\smn| = [lsa?

e Inner product

(si(t), si(1)) = (si,sy)
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Modulation Schemes



Pulse Amplitude Modulation

e Signal Waveforms
Sm(t) = Amp(t), 1<m<M

where p(t) is a pulse of duration T and An’s denote the M possible
amplitudes.

e Example M = 2, p(t) is a real pulse
A1 = —A, A, = Afor areal number A

>0
>e
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Pulse Amplitude Modulation

e Example M = 4, p(t) is a real pulse
A =-3A A =-AA=AA =3A
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Phase Modulation

e Complex envelope of phase modulated signals

2m—

sm(t) = p(H)e! ™, 1<m<M

where p(t) is a real baseband pulse of duration T
e Corresponding passband signals

sh(t) = Re [\@sm(t)ejz"’“t]

V2p(t) cos (W) cos 2nfyt

—V2p(t) sin (W) sin 2rfst
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Constellation for PSK

QPSK, M =4

Octal PSK, M = 8
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Quadrature Amplitude Modulation

e Complex envelope of QAM signals
Sm(t) = (Am,i +jAm,q)p(t)7 1 <m< m

where p(t) is a real baseband pulse of duration T
e Corresponding passband signals

sh(t)

Re [\@sm(t)ejz"’ﬂ
V2An.ip(t) cos 27 fst — V2An gp(t) sin 27ft
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Constellation for QAM

16-QAM
° ° °
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° ° °
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Thanks for your attention
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