Assignment 4: 20 points

1. [10 points] A complex random vector $\mathbf{Z} = \mathbf{X} + j\mathbf{Y}$ is said to be a complex Gaussian vector if \mathbf{X} and \mathbf{Y} are jointly Gaussian vectors.

Let $\psi_1(t), \psi_2(t), \ldots, \psi_K(t)$ be a complex orthonormal basis. Let $n(t) = n_c(t) + jn_s(t)$ be complex white Gaussian noise with PSD $2\sigma^2$. Then $n_c(t)$ and $n_s(t)$ are independent real WGN processes with PSD σ^2 . Consider the projection of n(t) onto the orthonormal basis

$$\mathbf{N} = \begin{bmatrix} \langle n, \psi_1 \rangle \\ \vdots \\ \langle n, \psi_K \rangle \end{bmatrix}$$

Show that **N** is a complex Gaussian vector i.e. the components of the following vector $\tilde{\mathbf{N}}$ are jointly Gaussian. Here $\Re(z)$ denotes the real part of a complex number z and $\Im(z)$ denotes the imaginary part of a complex number z.

$$\tilde{\mathbf{N}} = \begin{bmatrix} \Re(\langle n, \psi_1 \rangle) \\ \vdots \\ \Re(\langle n, \psi_K \rangle) \\ \Im(\langle n, \psi_1 \rangle) \\ \vdots \\ \Im(\langle n, \psi_K \rangle) \end{bmatrix}.$$

Hint: Independent Gaussian random variables are jointly Gaussian.

2. [10 points] Consider binary signaling in the complex AWGN channel

$$\begin{array}{rcl} H_0 & : & y(t) = s_0(t) + n(t) \\ H_1 & : & y(t) = s_1(t) + n(t) \end{array}$$

where y(t) is the complex envelope of received signal, $s_i(t)$ is the complex envelope of transmitted signal under H_i , and n(t) is complex white Gaussian noise with PSD $2\sigma^2$.

The ML receiver decides that H_0 is true if $Z = \Re(\langle y, s_0 - s_1 \rangle)$ is greater than $\frac{\|s_0\|^2 - \|s_1\|^2}{2}$. Otherwise, it decides that H_1 is true.

- (a) Calculate the mean of Z under both H_0 and H_1 .
- (b) Show that the variance of Z under both H_0 and H_1 is $\sigma^2 ||s_0 s_1||^2$.
- (c) Show that the conditional probability of error of the ML receiver under both H_0 and H_1 is $Q\left(\frac{\|s_0-s_1\|}{2\sigma}\right)$.