Endsem Exam 40 points

1. [5 points] Consider

$$u(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT)$$

where $p(t) = I_{[0,T)}(t)$ for a fixed time duration T > 0. Recall that $I_A(t)$ is the indicator function of the set A.

- (a) Prove that u(t) is a cyclostationary random process with respect to period T if $\{b_n\}$ is a discrete-time stationary random process.
- (b) Prove that u(t) is a wide-sense cyclostationary random process with respect to period T if $\{b_n\}$ is a discrete-time wide-sense stationary random process.
- 2. [5 points] Consider the following *M*-ary hypothesis testing problem:

$$H_{1}: y(t) = s_{1}(t) + n(t)$$
$$H_{2}: y(t) = s_{2}(t) + n(t)$$
$$\vdots$$
$$H_{M}: y(t) = s_{M}(t) + n(t)$$

where $s_1(t), s_2(t), \ldots, s_M(t)$ are real signals which are nonzero for $-T \leq t \leq T$ for a fixed T > 0 and n(t) is white Gaussian noise (also real). The hypothesis H_i occurs with probability π_i where $\sum_{i=1}^M \pi_i = 1$.

We are given that

$$s_i(t) = s_j(t)$$
 for $t \in [-T, 0]$

for all $i, j \in \{1, 2, ..., M\}$. Show that the optimal receiver can ignore the signal received in the interval [-T, 0] in taking its decision.

3. [5 points] Consider the binary hypothesis testing problem below where the hypothesis are equally likely, $s_0(t)$ and $s_1(t)$ are distinct finite energy real signals, and n(t) is a real white Gaussian noise process with PSD σ^2 .

$$H_0: y(t) = s_0(t) + n(t),$$

$$H_1: y(t) = s_1(t) + n(t).$$

- (a) Derive the optimal decision rule for this hypothesis testing problem. You can use the optimal decision rule for *M*-ary hypothesis testing without giving a proof. Simplify it to the form of "a single random variable being compared to a threshold".
- (b) Derive the average decision error probability P_e of this optimal decision rule.
- (c) Show that P_e is minimized when $s_0(t)$ and $s_1(t)$ are antipodal signals, that is when $s_0(t) = -s_1(t)$.
- 4. (a) [2 points] Let $b \ge 1$ be an integer. For $M = 2^b$, suppose M orthogonal real signals $s_i(t)$, $i = 1, \ldots, M$ are used for transmitting b bits over a real AWGN channel with PSD $\frac{N_0}{2}$. If all the signals have the same energy E and are equally likely to be transmitted, derive the following as a function of E, N_0 , b or M when the optimal receiver is used.

- i. The union bound on the symbol error probability
- ii. The nearest neighbor approximation of the symbol error probability
- (b) [3 points] Suppose we use the M signals in the previous part to form a set of 2M real signals

$$\{s_1(t), s_2(t), \ldots, s_M(t), -s_1(t), -s_2(t), \ldots, -s_M(t)\}.$$

So the set contains M signals and their negative versions. These 2M signals are used for transmitting b + 1 bits over a real AWGN channel with PSD $\frac{N_0}{2}$. If all the 2M signals are equally likely to be transmitted, derive the following as a function of E, N_0 , b or M when the optimal receiver is used.

- i. The union bound on the symbol error probability
- ii. The nearest neighbor approximation of the symbol error probability
- 5. [5 points] Consider the *M*-ary hypothesis testing problem in AWGN where $s_i(t) = A_i p(t)$ for a unit energy real signal p(t) which is nonzero for $0 \le t \le T$ and $A_i \in \mathbb{R}$ such that $A_1 > A_2 > \cdots > A_M$.

$$\begin{array}{rcl} H_1 & : & y(t) = s_1(t) + n(t) \\ H_2 & : & y(t) = s_2(t) + n(t) \\ \vdots & & \vdots \\ H_M & : & y(t) = s_M(t) + n(t) \end{array}$$

If all the hypotheses are equally likely, show that the optimal receiver compares the output of a matched filter to a set of thresholds. You can use the optimal decision rule for M-ary hypothesis testing without giving a proof.

6. [5 points] Consider the following binary hypothesis testing problem where the hypothesis are equally likely.

 $H_0: Y_i \sim \text{Bernoulli}(p_0) \text{ for } i = 1, 2, \dots, N,$ $H_1: Y_i \sim \text{Bernoulli}(p_1) \text{ for } i = 1, 2, \dots, N.$

Assume that the Y_i 's are independent under both hypotheses. Assume that $p_1 > p_0$. Note that p_0 and p_1 are known.

- (a) Derive the optimal decision rule.
- (b) Find the decision error probability of the optimal decision rule.
- 7. [5 points] Suppose X is a Gaussian random variable with mean μ and variance $\sigma^2 > 0$. The parameters μ and σ^2 are known. We observe Y given by

$$Y = X + N,$$

where N is a Gaussian random variable with mean 0 and variance σ^2 . Assume that X is independent of N. Find the MMSE estimator of X given Y.

8. [5 points] Suppose N_1, N_2 are independent Gaussian random variables each having mean 0 and variance $\sigma^2 > 0$. The variance σ^2 is assumed to be known. We observe two observations Y_1, Y_2 given by

$$Y_1 = \lambda + N_1,$$

$$Y_2 = 2\lambda + N_1 + N_2.$$

- (a) Find the ML estimator of the parameter λ .
- (b) Perform a sanity check on the formula you got for the ML estimator. Explain why it makes sense.
- (c) Find the mean and variance of the ML estimator.