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Basics of Hypothesis Testing



What is a Hypothesis?
One situation among a set of possible situations

Example (Radar)

EM waves are transmitted and the reflections observed.
Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.
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What is Hypothesis Testing?

A statistical framework for deciding which hypothesis is true

Under each hypothesis the observations are assumed to have a known
distribution

Consider the case of two hypotheses (binary hypothesis testing)

H : Y~P
H1 : YNP1

Y is the random observation vector belonging to R” for n € N
The hypotheses are assumed to occur with given prior probabilities

Pr(Ho istrue) =
Pr(H; is true) = m

where mg + 1 = 1.



Location Testing with Gaussian Error

e |etobservation setbe R and > 0

HO : YNN(_NWUZ)
Hi Y ~N(uo?)

—u I y

e Any point in R can be generated under both Hp and H;

e What is a good decision rule for this hypothesis testing problem which
takes the prior probabilities into account?



What is a Decision Rule?

e A decision rule for binary hypothesis testing is a partition of R” into 'y
and I’y such that
[ 0 ifyelg
5(V)—{ 1 ifyer
We decide Hi is true when é(y) = i for i € {0,1}
For the location testing with Gaussian error problem, one possible
decision rule is
r() = (_007 0]
ry = (O, OO)
and another possible decision rule is
Ny = (—o0,—100)U (-50,0)
ry = [-100,-50]U [0, o)

Given that partitions of the observation set define decision rules, what is
the optimal partition?



Which is the Optimal Decision Rule?

The optimal decision rule minimizes the probability of decision error
For the binary hypothesis testing problem of Hy versus Hj, the
conditional decision error probability given H; is true is

Pei = Pr[Deciding Hi_; is true|H; is true]
PrlY e I'_i|H]]
1-— PI’[Y S I’,-|H;]
= 1- Pc\i

Probability of decision error is
Pe = moPejo + 1 Pey1
Probability of correct decision is

Pc:ﬂ'OPc|O+7F1Pc|1:1_Pe



Which is the Optimal Decision Rule?

e Maximizing the probability of correct decision will minimize probability of
decision error

e Probability of correct decision is

Pe = moPeo + m1Pep

= m)/ po(y) dy+7r1/ pi(y) dy
) [

1—/r0p1(y) dy]

= m+ [ [mopo(y) — mpi(y)] dy

o

o / Po(y) dy +
Fo

e To maximize P., we choose the partition {I'o, 1} as

o = {yeRmopo(y) >mpi(y)}
r = {y€Rlmopo(y) <mipi(y)}

e The points y for which mopo(y) = m1p1(y) can be in either I, and I'¢ (the
optimal decision rule is not unique)



Location Testing with Gaussian Error

° Letu1>uoandﬂ'o=ﬂ'1=%

Ho @ Y ~N(u,d%)
Hi Y~ N(u1,0%)

( ) q 7(}’*!‘20)2
= e 20
Pl Vro?
) 1 _(y—u21>2
= e 20
Py V2ro?
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Location Testing with Gaussian Error

e Optimal decision rule is given by the partition {Io, 1}

Mo
I

{y € Rmopo(y) > mp1(y)}
{y € Rlmopo(y) < mip1(y)}

e Formp=m =3

w1+ fo
Rly <
y € ‘y_ >

ry = {}/GR‘}/>M}

2
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Location Testing with Gaussian Error

Pejo = Pr[Y>L42—”1

) -a(g)

] =0 (1) = a1, )

Pe = moPejg + 1 Pej1 = Q (%)

Pe|1 = Pr [Y < BT —;IM

This Pe is for mo = m = §
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Location Testing with Gaussian Error

e Suppose 7y #
e Optimal decision rule is still given by the partition {I'o, 1}

o {y € Rlmopo(y) > mp1(¥)}
M = {y€Rjmopo(y) <mpi(y)}

e The partitions specialized to this problem are

2
My = {yGR‘yS‘u1+MO+ e lo @}
2 (11— po)
2
M = {yER‘y>N’1+NO+ g |og@}
2 (11— po)
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Location Testing with Gaussian Error
Suppose mp = 0.6 and 7y = 0.4

2 2
T:u1+uo+ o o @:u1+uo+0.4054a

2 (1 = po) 2 (11 = po)
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Location Testing with Gaussian Error
Suppose mp = 0.6 and 7y = 0.4

2 2
T:u1+uo+ o o @:M1+uo+0-4054a
2 (1 = po) 2 (11 = po)

— mopo(y)
— mpi(y)

Ho T y
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Location Testing with Gaussian Error
Suppose mo = 0.4 and 71 = 0.6

2 2
T:u1+uo+ o log ™0 — H1+ ko 0.40540

2 (1 = po) 2 (11 = po)
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Location Testing with Gaussian Error
Suppose mp = 0.4 and 71 = 0.6

2 (1 = po) 2 (11 = po)

2 2
T:u1+uo+ o log ™0 — H1+ ko 0.40540

— mopo(y)
— mpi(y)

v

Ho T Iz y

16/25



M-ary Hypothesis Testing

e M hypotheses with prior probabilities i, i=1,...,M

H1 . YNP1
H, :© Y~P;
Hu @ Y~ Py

e A decision rule for M-ary hypothesis testing is a partition of I' into M
disjoint regions {I;|i = 1,..., M} such that

o(y)=iifyerl;

We decide Hi; is true when 6(y) = iforie {1,..., M}
e Minimum probability of error rule is

dwpe(y) = arg max mipi(Y)
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Maximum A Posteriori Decision Rule

e The a posteriori probability of H; being true given observation y is

P {H,- is true

_ mipi(y)
y] —p(y)

e The MAP decision rule is given by

omar(y) = argm@x’P {H,— is true

V} = dure(Y)

MAP decision rule = MPE decision rule
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Maximum Likelihood Decision Rule

e The ML decision rule is given by

du(y) = arg max pi(y)

e If the M hypotheses are equally likely, w; = 1m

e The MPE decision rule is then given by
dwpe(y) = arg 1@/%XMWIPI'(V) = om(y)

For equal priors, ML decision rule = MPE decision rule
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Irrelevant Statistics



Irrelevant Statistics

e |n this context, the term statistic means an observation

e For a given hypothesis testing problem, all the observations may not be
useful

Example (Irrelevant Statistic)
v=[v v

Hi: Yi=A+N, Yo=N,
Ho: Yi=Ny, Yo =Ns
where A > 0, Ny ~ N(0,6%), N> ~ N(0, 0?).
e If Ny and N, are independent, Y is irrelevant.
e [f Ny and N: are correlated, Y> is relevant.

e Need a method to recognize irrelevant components of the observations
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Characterizing an Irrelevant Statistic

Theorem

For M-ary hypothesis testing using an observationY = [Y1 Y|, the statistic
Y. is irrelevant if the conditional distribution of Y2, given Yy and H;, is
independent of i. In terms of densities, the condition for irrelevance is

p(yaly1, Hi) = p(y2|y1) Vi.

Proof
owpe(y) = arg max mpi(y) = arg max mp(y|H)
p(y|H) = p(y1,y2|Hi) = p(ya|ys, Hi)p(y1|H:)
= p(Yzly1)p(y:|H:)
oupe(y) = arg max mip(yz|y:)p(yi|H;) = arg max mip(y:|H;)
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Example of an Irrelevant Statistic
Example (Independent Noise)
v=[vi v

H; : Y1:A+N1, Yo = N»
Ho: Yi=N, Yo =Nz
where A > 0, Ny ~ N(0,0%), N2 ~ N(0,5%), with Ny, N independent
p(yzlyr, Ho) = p(y2)
p(yzlyr, Hi)

|
=N
=

23/25



Example of a Relevant Statistic

Example (Correlated Noise)
Y=[v v

H; : Y1:A+N1, Yo = N»
Ho: Yi= Ny, Yo =N

where A > 0, Ny ~ N (0,02), No ~ N(0,02), Cy = 02 B} 'ﬂ where
0<|pl <1

1 _ (,Vz—ﬂéV1)22
H) = ————e A1-09)0?
p(yzly1, Ho) on 7)o
y 1 _ Lvrp(hz —/\2)12
, = — e 21—
p(yalys, Hr) o )02
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