Endsem Exam 40 points

- 1. [4 points] State whether the following statements are **True** or **False** with a short justification (half a page or less).
  - (a) Suppose that  $\phi_1(t), \phi_2(t), \dots, \phi_M(t)$  is an orthonormal basis for the set of signals  $s_1(t), s_2(t), \dots, s_N(t)$ . Then  $M \ge N$ .
  - (b) A sum of Gaussian random variables is always a Gaussian random variable.
  - (c) In a binary hypothesis testing situation with equally likely hypotheses, the probability of decision error of the optimal decision rule is always less than or equal to  $\frac{1}{2}$ .
  - (d) Suppose we have to choose two signals from a set of three distinct signals  $\{s_1(t), s_2(t), s_3(t)\}$  to transmit a single bit over an AWGN channel. We should pick the pair of signals  $s_i(t)$  and  $s_j(t)$  such that  $||s_i s_j||$  is maximum where  $i, j \in \{1, 2, 3\}$  and  $i \neq j$ .
- 2. [6 points] Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$\begin{array}{rcl} H_{0} & : & Y \sim U\left[ a, b \right] \\ H_{1} & : & Y \sim U\left[ c, d \right] \end{array}$$

where U denotes the uniform distribution and a, b, c, d are real numbers satisfying a < c < d < b.

- (a) Derive the optimal decision rule.
- (b) Find the decision error probability of the optimal decision rule.
- 3. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding  $N = N_c + jN_s$  where  $N_c$  and  $N_s$  are independent Gaussian random variables with zero mean and variance  $\frac{N_0}{2}$ . All the constellation points are equally likely to be transmitted. Calculate the following for the optimal decision rule in terms of  $E_b$  and  $N_0$ .
  - (a) The intelligent union bound on the exact error probability.
  - (b) The nearest neighbor approximation of the exact error probability.



4. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding  $N = N_c + jN_s$  where  $N_c$  and  $N_s$  are independent Gaussian random variables with zero mean and variance  $\frac{N_0}{2}$ . All the constellation points are equally likely to be transmitted. Calculate the BER performance of the ML receiver under a Gray mapping in terms of  $E_b$  and  $N_0$ .



- 5. (a) [3 points] Let  $b \ge 1$  be an integer. For  $M = 2^b$ , suppose M orthogonal real signals  $s_i(t)$ , i = 1, ..., M are used for transmitting b bits over a real AWGN channel with PSD  $\frac{N_0}{2}$ . If all the signals have the same energy E and are equally likely to be transmitted, derive the following as a function of E,  $N_0$ , b or M when the optimal receiver is used.
  - i. The union bound on the symbol error probability
  - ii. The nearest neighbor approximation of the symbol error probability
  - (b) [3 points] Suppose we use the M signals in the previous part to form a set of 2M real signals

$$\{s_1(t), s_2(t), \ldots, s_M(t), -s_1(t), -s_2(t), \ldots, -s_M(t)\}.$$

So the set contains M signals and their negative versions. These 2M signals are used for transmitting b + 1 bits over a real AWGN channel with PSD  $\frac{N_0}{2}$ . If all the 2M signals are equally likely to be transmitted, derive the following as a function of E,  $N_0$ , b or M when the optimal receiver is used.

- i. The union bound on the symbol error probability
- ii. The nearest neighbor approximation of the symbol error probability
- 6. [6 points] Suppose  $N_1, N_2$  are independent Gaussian random variables each having mean 0 and variance  $\sigma^2 > 0$ . The variance  $\sigma^2$  is assumed to be known. We observe two observations  $Y_1, Y_2$  given by

$$Y_1 = \lambda + N_1 - N_2,$$
  
$$Y_2 = 2\lambda + N_1 + N_2$$

- (a) Find the ML estimator of the parameter  $\lambda$ .
- (b) Find the mean and variance of the ML estimator.
- 7. [6 points] Suppose we observe  $Y_i, i = 1, 2, ..., M$  such that

$$Y_i \sim \text{Uniform}\left[-\frac{\theta}{2}, 2\theta\right]$$

where  $Y_i$ 's are independent and  $\theta$  is unknown. Assume  $\theta \ge 0$ . Derive the ML estimator of  $\theta$ .