Random Processes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Random Process

Definition

An indexed collection of random variables $\{X(t): t \in \mathcal{T}\}.$

Discrete-time Random Process $T = \mathbb{Z}$ or \mathbb{N}

Continuous-time Random Process $T = \mathbb{R}$

Statistics

Mean function

$$m_X(t) = E[X(t)]$$

Autocorrelation function

$$R_X(t_1, t_2) = E[X(t_1)X^*(t_2)]$$

Autocovariance function

$$C_X(t_1, t_2) = E[(X(t_1) - m_X(t_1))(X(t_2) - m_X(t_2))^*]$$

Stationary Random Process

Definition

A random process which is statistically indistinguishable from a delayed version of itself.

Properties

- For any $n \in \mathbb{N}$, $(t_1, \ldots, t_n) \in \mathbb{R}^n$ and $\tau \in \mathbb{R}$, $(X(t_1), \ldots, X(t_n))$ has the same joint distribution as $(X(t_1 \tau), \ldots, X(t_n \tau))$.
- For n = 1, we have

$$F_{X(t)}(x) = F_{X(t+\tau)}(x)$$

for all t and τ . The first order distribution is independent of time.

- $m_X(t) = m_X(0)$
- For n=2 and $\tau=t_1$, we have

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(0),X(t_2-t_1)}(x_1,x_2)$$

for all t_1 and t_2 . The second order distribution depends only on $t_2 - t_1$.

•
$$R_X(t_1, t_2) = R_X(t_1 - \tau, t_2 - \tau) = R_X(t_1 - t_2, 0)$$

Wide Sense Stationary Random Process

Definition

A random process is WSS if

$$m_X(t) = m_X(0)$$
 for all t and $R_X(t_1, t_2) = R_X(t_1 - t_2, 0)$ for all t_1, t_2 .

Autocorrelation function is expressed as a function of $\tau = t_1 - t_2$ as $R_X(\tau)$.

Definition (Power Spectral Density of a WSS Process)

The Fourier transform of the autocorrelation function.

$$S_X(f) = \mathcal{F}(R_X(\tau))$$

Energy Spectral Density of Signals

Definition

For a signal x(t), the energy spectral density is defined as

$$E_{x}(f)=|X(f)|^{2}.$$

Motivation

Pass x(t) through an ideal narrowband filter with response

$$H_{f_0}(f) = \left\{ \begin{array}{ll} 1, & \text{if } f_0 - \frac{\Delta f}{2} < f < f_0 + \frac{\Delta f}{2} \\ 0, & \text{otherwise} \end{array} \right.$$

Output is $Y(f) = X(f)H_{f_0}(f)$. Energy in output is given by

$$\int_{-\infty}^{\infty} |Y(f)|^2 df = \int_{f_0 - \frac{\Delta f}{2}}^{f_0 + \frac{\Delta f}{2}} |X(f)|^2 df \approx |X(f_0)|^2 \Delta f$$

Note

$$|X(t)|^2 \leftrightarrow x(t) \star x^*(-t) = \int_{-\infty}^{\infty} x(u)x^*(u-t) du$$

Power Spectral Density

Motivation

PSD characterizes spectral content of random signals which have infinite energy but finite power

Example (Finite-power infinite-energy signal)

Binary PAM signal

$$x(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT)$$

Time windowed realizations have finite energy

$$\begin{array}{rcl} x_{\mathcal{T}_o}(t) & = & x(t)I_{[-\frac{\mathcal{T}_o}{2},\frac{\mathcal{T}_o}{2}]}(t) \\ X_{\mathcal{T}_o}(f) & = & \mathcal{F}(x_{\mathcal{T}_o}(t)) \\ \hat{S}_x(f) & = & \frac{|X_{\mathcal{T}_o}(f)|^2}{\mathcal{T}_o} \end{array} \quad \text{(PSD Estimate)} \end{array}$$

Definition (PSD of a realization)

$$\bar{S}_{x}(f) = \lim_{T_o \to \infty} \frac{|X_{T_o}(f)|^2}{T_o}$$

Autocorrelation Function of a Realization

Motivation

$$\begin{split} \hat{S}_{x}(f) &= \frac{|X_{T_{o}}(f)|^{2}}{T_{o}} \quad \leftrightarrow \quad \frac{1}{T_{o}} \int_{-\infty}^{\infty} x_{T_{o}}(u) x_{T_{o}}^{*}(u-\tau) \ du \\ &= \frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} x_{T_{o}}(u) x_{T_{o}}^{*}(u-\tau) \ du \\ &= \hat{R}_{x}(\tau) \quad \text{(Autocorrelation Estimate)} \end{split}$$

Definition (Autocorrelation function of a realization)

$$\bar{R}_{x}(\tau) = \lim_{T_{o} \to \infty} \frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} x_{T_{o}}(u) x_{T_{o}}^{*}(u - \tau) du$$

The Two Definitions of Power Spectral Density

Definition (PSD of a WSS Process)

$$S_X(f) = \mathcal{F}(R_X(\tau))$$

where $R_X(\tau) = E[X(t)X^*(t-\tau)].$

Definition (PSD of a realization)

$$\bar{S}_{x}(f) = \mathcal{F}(\bar{R}_{x}(\tau))$$

where

$$\bar{R}_x(\tau) = \lim_{T_o \to \infty} \frac{1}{T_o} \int_{-\frac{T_o}{2}}^{\frac{T_o}{2}} x_{T_o}(u) x_{T_o}^*(u - \tau) \ du$$

Both are equal for ergodic processes

Ergodic Process

Definition

A stationary random process is ergodic if time averages equal ensemble averages.

Ergodic in mean

$$\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)\ dt=E[X(t)]$$

Ergodic in autocorrelation

$$\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)x^*(t-\tau)\ dt=R_X(\tau)$$

References

- Section 2.3, Fundamentals of Digital Communication, Upamanyu Madhow, 2008
- Page 15, Fundamentals of Digital Communication, Upamanyu Madhow, 2008