Assignment 5: 20 points

1. [10 points] Let $\psi_1(t), \psi_2(t)$ be a complex orthonormal basis. Let $n(t) = n_c(t) + jn_s(t)$ be complex white Gaussian noise with PSD $2\sigma^2$. Then $n_c(t)$ and $n_s(t)$ are independent real WGN processes with PSD σ^2 . Consider the projection of n(t) onto the orthonormal basis given by

$$\mathbf{N} = \begin{bmatrix} \langle n, \psi_1 \rangle \\ \langle n, \psi_2 \rangle \end{bmatrix} = \begin{bmatrix} N_{1,c} + j N_{1,s} \\ N_{2,c} + j N_{2,s} \end{bmatrix}.$$

- (a) Show that $N_{1,c}$ and $N_{2,c}$ are independent random variables.
- (b) Show that $N_{1,c}$ and $N_{2,s}$ are independent random variables.
- 2. [10 points] For the 16-QAM constellation shown below calculate E_b in terms of A. Assume that the transmitted symbol is corrupted by adding $N = N_c + jN_s$ where N_c and N_s are independent zero-mean Gaussian random variables with variance $\frac{N_0}{2}$. If all the constellation points are equally likely to be transmitted, calculate the following in terms of E_b and N_0 .
 - (a) The exact error probability of the optimal decision rule.
 - (b) The union bound on the exact error probability.
 - (c) The intelligent union bound on the exact error probability.
 - (d) The nearest neighbor approximation of the exact error probability.

