EE 703: Digital Message Transmission (Autumn 2022)
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

1. (a) [5 points] Let $b \geq 1$ be an integer. For $M=2^{b}$, suppose M orthogonal real signals $s_{i}(t), i=1, \ldots, M$ are used for transmitting b bits over a real AWGN channel with PSD $\frac{N_{0}}{2}$. If all the signals have the same energy E and are equally likely to be transmitted, derive the following as a function of E, N_{0}, b or M when the optimal receiver is used.
i. The union bound on the symbol error probability
ii. The nearest neighbor approximation of the symbol error probability
(b) [5 points] Suppose we use the M signals in the previous part to form a set of $2 M$ real signals

$$
\left\{s_{1}(t), s_{2}(t), \ldots, s_{M}(t),-s_{1}(t),-s_{2}(t), \ldots,-s_{M}(t)\right\}
$$

So the set contains M signals and their negative versions. These $2 M$ signals are used for transmitting $b+1$ bits over a real AWGN channel with PSD $\frac{N_{0}}{2}$. If all the $2 M$ signals are equally likely to be transmitted, derive the following as a function of E, N_{0}, b or M when the optimal receiver is used.
i. The union bound on the symbol error probability
ii. The nearest neighbor approximation of the symbol error probability
2. [10 points] Suppose N_{1}, N_{2} are independent Gaussian random variables each having mean 0 and variance $\sigma^{2}>0$. The variance σ^{2} is assumed to be known. We observe two observations Y_{1}, Y_{2} given by

$$
\begin{aligned}
& Y_{1}=\lambda+N_{1}-N_{2}, \\
& Y_{2}=2 \lambda+N_{1}+N_{2} .
\end{aligned}
$$

(a) Find the ML estimator of the parameter λ.
(b) Find the mean and variance of the ML estimator.

