- 1. (a) [5 points] Let $b \ge 1$ be an integer. For $M = 2^b$, suppose M orthogonal real signals $s_i(t)$, i = 1, ..., M are used for transmitting b bits over a real AWGN channel with PSD $\frac{N_0}{2}$. If all the signals have the same energy E and are equally likely to be transmitted, derive the following as a function of E, N_0 , b or M when the optimal receiver is used.
 - i. The union bound on the symbol error probability
 - ii. The nearest neighbor approximation of the symbol error probability
 - (b) [5 points] Suppose we use the M signals in the previous part to form a set of 2M real signals

$$\{s_1(t), s_2(t), \ldots, s_M(t), -s_1(t), -s_2(t), \ldots, -s_M(t)\}.$$

So the set contains M signals and their negative versions. These 2M signals are used for transmitting b + 1 bits over a real AWGN channel with PSD $\frac{N_0}{2}$. If all the 2M signals are equally likely to be transmitted, derive the following as a function of E, N_0 , b or M when the optimal receiver is used.

- i. The union bound on the symbol error probability
- ii. The nearest neighbor approximation of the symbol error probability
- 2. [10 points] Suppose N_1, N_2 are independent Gaussian random variables each having mean 0 and variance $\sigma^2 > 0$. The variance σ^2 is assumed to be known. We observe two observations Y_1, Y_2 given by

$$Y_1 = \lambda + N_1 - N_2,$$

$$Y_2 = 2\lambda + N_1 + N_2.$$

- (a) Find the ML estimator of the parameter λ .
- (b) Find the mean and variance of the ML estimator.