1. [4 points] Suppose X_1, X_2, X_3, X_4 are jointly Gaussian random variables. We are also given that X_1, X_2, X_3, X_4 are independent random variables.

All four random variables have variance $\sigma^2 > 0$. X_1 and X_2 have mean $\mu > 0$ while X_3 and X_4 have mean $-\mu$.

Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$H_1 : \mathbf{Y} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix},$$
$$H_2 : \mathbf{Y} = \begin{bmatrix} X_2 \\ X_3 \\ X_4 \end{bmatrix}.$$

- (a) Derive the optimal decision rule. Show your steps and simplify the rule as much as possible.
- (b) Find the decision error probability of the optimal decision rule.
- 2. [6 points] For the below constellation of 9 symbols, assume that the transmitted symbol is corrupted by adding $N = N_c + jN_s$ where N_c and N_s are independent Gaussian random variables with zero mean and variance σ^2 . All the constellation points are equally likely to be transmitted. Calculate the following for the optimal decision rule in terms of A and σ .
 - (a) The union bound on the exact error probability.
 - (b) The intelligent union bound on the exact error probability.
 - (c) The nearest neighbor approximation of the exact error probability.

3. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding $N = N_c + jN_s$ where N_c and N_s are independent Gaussian random variables with zero mean and variance $\frac{N_0}{2}$. All the constellation points are equally likely to be transmitted. Calculate the BER performance of the ML receiver under a Gray mapping in terms of E_b and N_0 .

- 4. [6 points] Let $p(t) = \frac{1}{\sqrt{T}}I_{[0,T)}(t)$ be the unit energy rectangular pulse of duration *T*. Suppose we are given a set of 16 signals $\{\pm p(t), \pm 3p(t), \pm 5p(t), \pm 7p(t), \pm 9p(t), \pm 11p(t), \pm 13p(t), \pm 15p(t)\}$. Due to some engineering constraints, a **transmitter can transmit signals only from this set**. The transmitted signal will be corrupted by real additive white Gaussian noise with PSD σ^2 .
 - (a) Suppose the transmitter wants to convey a single bit in the duration T. To minimize the decision error probability of the ML decision rule, which signals from the set should the transmitter use? Explain your answer.
 - (b) Suppose the transmitter wants to convey **two bits** in the duration T. The transmitter chooses four signals $a_1p(t), a_2p(t), a_3p(t), a_4p(t)$ from the set where $a_1 < a_2 < a_3 < a_4$ and $a_i \in \{\pm 1, \pm 3, \ldots, \pm 15\}$ for i = 1, 2, 3, 4. Derive the decision error probability of the ML decision rule as a function of a_1, a_2, a_3, a_4 and σ .
 - (c) For the situation described in part (b), the transmitter wants to choose a_1, a_2, a_3, a_4 such that the decision error probability of the ML decision rule is minimized. What values of a_1, a_2, a_3, a_4 should the transmitter use? Explain your answer.

5. [6 points] Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim U[-\theta, \theta]$$

where Y_i 's are independent and θ is unknown. Assume $\theta > 0$.

- (a) Derive the ML estimator of θ .
- (b) For any $\epsilon > 0$, show that $\Pr\left[\left|\hat{\theta}_{ML}(\mathbf{Y}) \theta\right| > \epsilon\right]$ tends to zero as the number of observations M goes to infinity. This will imply that the ML estimator approaches the true value of θ as the number of observations becomes large.
- 6. [6 points] Suppose we have two biased coins C_1 and C_2 . Let the probability that C_2 shows Heads when tossed be equal to the probability C_1 shows Tails when it is tossed. Each coin is tossed M times. Let the observations be given by the following, where X_i is the random variable representing the *i*th toss of C_1 and Y_i is the random variable representing the *i*th toss of C_2 . For both X_i and Y_i , the value 1 corresponds to Heads and the value 0 corresponds to Tails.

$$X_i \sim \text{Bernoulli}(p), \quad i = 1, 2, \dots, M,$$

 $Y_i \sim \text{Bernoulli}(1-p), \quad i = 1, 2, \dots, M.$

The parameter p is the probability that C_1 shows Heads when tossed. Also assume that the X_i 's and Y_i 's are pairwise independent, and that the X_i 's are independent of the Y_i 's.

Find the ML estimator of the parameter p. Show your steps.

7. [6 points] Suppose X and Y are jointly Gaussian random variables. Let their joint pdf be given by

$$p_{XY}(x,y) = \frac{1}{2\pi |\mathbf{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{s}-\boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{s}-\boldsymbol{\mu})\right)$$

where $\mathbf{s} = \begin{bmatrix} x \\ y \end{bmatrix}$, $\boldsymbol{\mu} = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$

Suppose Y is observed and we want to estimate X. Show that the MMSE estimator of X is given by

$$\hat{X}_{MMSE}(y) = \mu_x + \frac{\sigma_x}{\sigma_y}\rho(y - \mu_y).$$