EE 703: Digital Message Transmission (Autumn 2022)
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

1. [4 points] Suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are jointly Gaussian random variables. We are also given that $X_{1}, X_{2}, X_{3}, X_{4}$ are independent random variables.
All four random variables have variance $\sigma^{2}>0 . X_{1}$ and X_{2} have mean $\mu>0$ while X_{3} and X_{4} have mean $-\mu$.

Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$
\begin{aligned}
& H_{1}: \quad \mathbf{Y}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right], \\
& H_{2}: \quad \mathbf{Y}=\left[\begin{array}{l}
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right] .
\end{aligned}
$$

(a) Derive the optimal decision rule. Show your steps and simplify the rule as much as possible.
(b) Find the decision error probability of the optimal decision rule.
2. [6 points] For the below constellation of 9 symbols, assume that the transmitted symbol is corrupted by adding $N=N_{c}+j N_{s}$ where N_{c} and N_{s} are independent Gaussian random variables with zero mean and variance σ^{2}. All the constellation points are equally likely to be transmitted. Calculate the following for the optimal decision rule in terms of A and σ.
(a) The union bound on the exact error probability.
(b) The intelligent union bound on the exact error probability.
(c) The nearest neighbor approximation of the exact error probability.

3. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding $N=N_{c}+j N_{s}$ where N_{c} and N_{s} are independent Gaussian random variables with zero mean and variance $\frac{N_{0}}{2}$. All the constellation points are equally likely to be transmitted. Calculate the BER performance of the ML receiver under a Gray mapping in terms of E_{b} and N_{0}.

4. [6 points] Let $p(t)=\frac{1}{\sqrt{T}} I_{[0, T)}(t)$ be the unit energy rectangular pulse of duration T. Suppose we are given a set of 16 signals $\{ \pm p(t), \pm 3 p(t), \pm 5 p(t), \pm 7 p(t), \pm 9 p(t)$, $\pm 11 p(t), \pm 13 p(t), \pm 15 p(t)\}$. Due to some engineering constraints, a transmitter can transmit signals only from this set. The transmitted signal will be corrupted by real additive white Gaussian noise with PSD σ^{2}.
(a) Suppose the transmitter wants to convey a single bit in the duration T. To minimize the decision error probability of the ML decision rule, which signals from the set should the transmitter use? Explain your answer.
(b) Suppose the transmitter wants to convey two bits in the duration T. The transmitter chooses four signals $a_{1} p(t), a_{2} p(t), a_{3} p(t), a_{4} p(t)$ from the set where $a_{1}<a_{2}<a_{3}<a_{4}$ and $a_{i} \in\{ \pm 1, \pm 3, \ldots, \pm 15\}$ for $i=1,2,3,4$. Derive the decision error probability of the ML decision rule as a function of $a_{1}, a_{2}, a_{3}, a_{4}$ and σ.
(c) For the situation described in part (b), the transmitter wants to choose $a_{1}, a_{2}, a_{3}, a_{4}$ such that the decision error probability of the ML decision rule is minimized. What values of $a_{1}, a_{2}, a_{3}, a_{4}$ should the transmitter use? Explain your answer.
5. [6 points] Suppose we observe $Y_{i}, i=1,2, \ldots, M$ such that

$$
Y_{i} \sim U[-\theta, \theta]
$$

where Y_{i} 's are independent and θ is unknown. Assume $\theta>0$.
(a) Derive the ML estimator of θ.
(b) For any $\epsilon>0$, show that $\operatorname{Pr}\left[\left|\hat{\theta}_{M L}(\mathbf{Y})-\theta\right|>\epsilon\right]$ tends to zero as the number of observations M goes to infinity. This will imply that the ML estimator approaches the true value of θ as the number of observations becomes large.
6. [6 points] Suppose we have two biased coins C_{1} and C_{2}. Let the probability that C_{2} shows Heads when tossed be equal to the probability C_{1} shows Tails when it is tossed. Each coin is tossed M times. Let the observations be given by the following, where X_{i} is the random variable representing the i th toss of C_{1} and Y_{i} is the random variable representing the i th toss of C_{2}. For both X_{i} and Y_{i}, the value 1 corresponds to Heads and the value 0 corresponds to Tails.

$$
\begin{aligned}
X_{i} & \sim \operatorname{Bernoulli}(p), \quad i=1,2, \ldots, M \\
Y_{i} & \sim \operatorname{Bernoulli}(1-p), \quad i=1,2, \ldots, M .
\end{aligned}
$$

The parameter p is the probability that C_{1} shows Heads when tossed. Also assume that the X_{i} 's and Y_{i} 's are pairwise independent, and that the X_{i} 's are independent of the Y_{i} 's.
Find the ML estimator of the parameter p. Show your steps.
7. [6 points] Suppose X and Y are jointly Gaussian random variables. Let their joint pdf be given by

$$
p_{X Y}(x, y)=\frac{1}{2 \pi|\mathbf{C}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\mathbf{s}-\boldsymbol{\mu})^{T} \mathbf{C}^{-1}(\mathbf{s}-\boldsymbol{\mu})\right)
$$

where $\mathbf{s}=\left[\begin{array}{l}x \\ y\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}\mu_{x} \\ \mu_{y}\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{cc}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\ \rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}\end{array}\right]$
Suppose Y is observed and we want to estimate X. Show that the MMSE estimator of X is given by

$$
\hat{X}_{M M S E}(y)=\mu_{x}+\frac{\sigma_{x}}{\sigma_{y}} \rho\left(y-\mu_{y}\right) .
$$

