1. [6 points] For the below constellation of 8 symbols, assume that the transmitted symbol is corrupted by adding $N=N_{c}+j N_{s}$ where N_{c} and N_{s} are independent Gaussian random variables with zero mean and variance σ^{2}. All the constellation points are equally likely to be transmitted. Calculate the following for the optimal decision rule in terms of A and σ.
(a) The union bound on the exact error probability.
(b) The intelligent union bound on the exact error probability. Hint: Draw the decision regions of the optimal decision rule.
(c) The nearest neighbor approximation of the exact error probability.

2. [4 points] Suppose we have two biased coins C_{1} and C_{2}. Let the probability that C_{2} shows Heads when tossed be two times the probability C_{1} shows Heads when it is tossed. Each coin is tossed M times. Let the observations be given by the following, where X_{i} is the random variable representing the i th toss of C_{1} and Y_{i} is the random variable representing the i th toss of C_{2}. For both X_{i} and Y_{i}, the value 1 corresponds to Heads and the value 0 corresponds to Tails.

$$
\begin{aligned}
X_{i} & \sim \operatorname{Bernoulli}(p), \quad i=1,2, \ldots, M \\
Y_{i} & \sim \operatorname{Bernoulli}(2 p), \quad i=1,2, \ldots, M
\end{aligned}
$$

The parameter p is the probability that C_{1} shows Heads when tossed. Assume that $0<p<\frac{1}{2}$. Also assume that the X_{i} 's and Y_{i} 's are pairwise independent, and that the X_{i} 's are independent of the Y_{i} 's.
Find the ML estimator of the parameter p. Show your steps.

