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Basics of Hypothesis Testing



What is a Hypothesis?
One situation among a set of possible situations

Example (Radar)

EM waves are transmitted and the reflections observed.
Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.
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What is Hypothesis Testing?

A statistical framework for deciding which hypothesis is true

Under each hypothesis the observations are assumed to have a known
distribution

Consider the case of two hypotheses (binary hypothesis testing)

Fh . Y A/F%
fﬁ . \( ~ F%

Y is the random observation vector belonging to R” for n € N
The hypotheses are assumed to occur with given prior probabilities

Pr(Hpistrue) = o
Pr(Hyistrue) = my

where g + 7 = 1.
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Location Testing with Gaussian Error

® | et observation setbe R and >0

Ho @ Y ~N(—p,o%)
Hi Y ~N(u,0)

® Any point in R can be generated under both Hy and H;

* What is a good decision rule for this hypothesis testing problem which
takes the prior probabilities into account?
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What is a Decision Rule?
e A decision rule for binary hypothesis testing is a partition of R” into g

and I’y such that
[ 0 ifyerlg
oy) = { 1 ifyerl;
We decide Hi; is true when 6(y) = i for i € {0,1}

® For the location testing with Gaussian error problem, one possible
decision rule is

ro = (——CXD,O]
|-1 = (0, OO)

and another possible decision rule is

Mo = (—o0,—100)U (—50,0)
r = [-100,—50] U0, o)

® Given that partitions of the observation set define decision rules, what is
the optimal partition?
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Which is the Optimal Decision Rule?

The optimal decision rule minimizes the probability of decision error

For the binary hypothesis testing problem of H, versus H;, the
conditional decision error probability given H; is true is

Pe)i

Pr [Deciding H;_; is true|H; is true]
Pr [y/ € F144\Fﬁ]

1 —Pr[Y e lj|H]]

1— F%U

Probability of decision error is

Pe = moPejo + 1 Pey1

Probability of correct decision is

Pe ::WOF%N +‘W1F%H =1-PFe
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Which is the Optimal Decision Rule?

® Maximizing the probability of correct decision will minimize probability of
decision error

® Probability of correct decision is
Pe = moPeo + m1 P

= 7ro/ po(y) d}/+7r1/ pi(y) dy
o Iy

= WO/PO(}/)dY-i—m
Mo

1— i p1(y) dy]
= m —|—/r [mopo(y) — mipi(y)] dy

® To maximize P, we choose the partition {I'o,1} as
Fo = {y€Rfmpo(y) = mipi(y)}
M = {yeRlmpo(y) <mipi(y)}

® The points y for which mopo(y) = m1p1(y) can be in either ', and 'y (the
optimal decision rule is not unique)
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Location Testing with Gaussian Error

® Letps > poand m = m = 3

Ho : Y~ N(po,0?)
Hi Y ~N(ui,0%)

) 1 _(y—u20>2
= e 20
Poly V2ro?
( ) 1 _ W ;121)2
= e 2
ity V2ro?
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Location Testing with Gaussian Error
* Optimal decision rule is given by the partition {I'o, 1}

o = {y €Rlmopo(y) > mpi(y)}
N = {y eRlmpo(y) < mpi(y)}

® Formp=m1 = 5

r1 — ‘{J/ € H{‘J/ > ££14j1!£9
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Location Testing with Gaussian Error

Poo = Pr | > Lol

HO] Q <M1 20M0 )

H1} ¢ (“020“‘) =Q ('LL1 20'“0

Pe = moPejo + m1Pej1 = Q (7”1 2—0M0)

Py = Pr {Y < L;“‘

\_/

This Pe is for mo = m = §
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Location Testing with Gaussian Error

® Suppose my # 1
® Optimal decision rule is still given by the partition {I'o, 1}

o = {y €R|mpo(y) > mpi(y)}
N = {yeRmpo(y) <mpi(y)}

® The partitions specialized to this problem are

1+ Ho o? Wo}

e = eERly < + log —

° {y ’y 2 (11— po) B
2

ry = {yeR’y>“‘+“°+ g |og@}

2 (11 = po) =
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Location Testing with Gaussian Error
Suppose mp = 0.6 and 7y = 0.4

2 2
T:u1+uo+ o o @:u1+uo+0-40540

2 (11— o) 2 2 (11 = po)
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Location Testing with Gaussian Error
Suppose mp = 0.6 and 7y = 0.4

2 2
:u1+uo+ o o @:u1+uo+0-40540

.
2 (11— o) 2 2 (11 = po)

— mopo(y)
— mpi(y)
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Location Testing with Gaussian Error
Suppose mo = 0.4 and 71 = 0.6

2 2
:u1+uo+ o log O _ M1t Ho 0.40540

T

2 (11— o) 2 2 (11 = po)
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Location Testing with Gaussian Error
Suppose mp = 0.4 and 71 = 0.6

2 (11— o) 2 2 (11 = po)

2 2
T:u1+uo+ o log 70— M1+ Ho 0.40540

— mopo(y)
— mpi(y)

7

16/25



M-ary Hypothesis Testing

® M hypotheses with prior probabilities 7, i=1,...,M

Hi : Y~ P
fﬁ . Y~ FE
Hy @ Y~ Py

e A decision rule for M-ary hypothesis testing is a partition of I into M
disjoint regions {I';|i = 1, ..., M} such that

o(y)=iifyerl;

We decide H; is true when é(y) = iforie {1,..., M}
® Minimum probability of error rule is

dumpe(y) = arg Jmax mipi(y)
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Maximum A Posteriori Decision Rule

® The a posteriori probability of H; being true given observation y is

P {H,ﬂ is true

_ mipi(y)
y] —p(y)

® The MAP decision rule is given by

5MAP(y) = arg1r;1ianMP |:H, is true

V} = oumpe(Y)

MAP decision rule = MPE decision rule
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Maximum Likelihood Decision Rule
® The ML decision rule is given by
du(y) = arg max pi(y)
e |f the M hypotheses are equally likely, w; = ‘H
® The MPE decision rule is then given by
dwpe(y) = arg max mipi(y) = dw(y)

For equal priors, ML decision rule = MPE decision rule

19/25



Irrelevant Statistics



Irrelevant Statistics

® |n this context, the term statistic means an observation

® For a given hypothesis testing problem, all the observations may not be
useful

Example (Irrelevant Statistic)
v=[v v

Hi: Yi=A+N, Yo=N,
Ho: Yi=Ni, Yo = N>
where A > 0, Ny ~ N(0,0?), No ~ N(0,0?).
e [f N; and N, are independent, Y> is irrelevant.
e [f Ny and N, are correlated, Y2 is relevant.

* Need a method to recognize irrelevant components of the observations
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Characterizing an Irrelevant Statistic

Theorem

For M-ary hypothesis testing using an observationY = [Y1 Y|, the statistic
Y. is irrelevant if the conditional distribution of Y2, given Yy and H;, is
independent of i. In terms of densities, the condition for irrelevance is

p(yaly1, Hi) = p(y2|y1) Vi.

Proof
wpe(y) = arg max mpi(y) = arg max mp(y|H))

p(YlH) = p(y1,Y2|Hi) = p(Yalys, H)p(y1|H;)
p(y21y1)p(y1|H;)
ovwpe(y) = arg 1g.ag;/,7?:‘P()’2|y1)P(\h|Hf):arg 1r£,.a§>§w7TiP(V1|Hf)
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Example of an Irrelevant Statistic
Example (Independent Noise)
v=[vi v

Hi: Yi=A+ Ah, Yo = No
Ho: Yi=N, Yo =Nz
where A > 0, Ny ~ N(0,0%), N2 ~ N(0,5%), with Ny, N independent
p(yzlyr, Ho) = p(y2)
p(yzlyr, Hi)

|
=N
=
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Example of a Relevant Statistic

Example (Correlated Noise)
Y=[v v

Hi: Yi=A+ Ah, Yo = No
Ho: Yi= Ny, Yo =N

where A > 0, Ny ~ N (0,02), No ~ N(0,02), Cy = 02 B} 'ﬂ where
0<|pl <1

1 47W2—ﬁ?)2
H) = ————e A1-09)0?
p(yzly1, Ho) on 7)o
y 1 _ Lvrp(hz —/\2)12
, = — e 21—
p(yalys, Hr) o )02
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