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Passband Signals in Passband Noise

Consider M-ary passband signaling over a channel with passband Gaussian
noise
H[ : yp(t) = Si,p(t) + np(t), I = 1, ey M
where
¥p(t) Real passband received signal
sip(t) Real passband signals

np(t) Real passband GN with PSD 0

— Signal
— Noise

&

Note: A WSS random process is passband if its autocorrelation function is a
passband signal
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Passband Signals in Passband Noise

Consider M-ary passband signaling over a channel with passband Gaussian
noise
H[ . yp(t) = Si,p(t) + np(t), I = 1, ey M

where
¥p(t) Real passband received signal
sip(t) Real passband signals
np(t) Real passband GN with PSD %
The equivalent problem in complex baseband is

Hi:y(t)=si(t)+n(t), i=1,....M

where
y(t) Complex envelope of yp(t)
si(t) Complex envelope of s; 5(t)
n(t) Complex envelope of np(t)

What is the optimal receiver in terms of the complex baseband signals?
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Optimal Receiver in AWGN using Complex Envelopes

Optimal receiver using passband representations

2
s;
ompe(Yp) = argmax (Vp, Sip) — @ +0? log ;i
1<i<M
Recall that (up, v») = Re ((u, v)) and ||up||? = ||ull?

Optimal receiver using complex baseband representations

12
ompe(y) = argmax Re((y,s,-))—M—s—azlogm

1<i<M 2
where y(t), si(t) are the complex envelopes of y,(t), si o(t) respectively

But what about the performance analysis?

We need to understand the statistics of n(t), the complex envelope of
the passband Gaussian noise process np(t)
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Complex Envelope of Passband Gaussian Noise

e The complex baseband representation of ny(t) is given by
A
V2

where 71p(t) is the Hilbert transform of np(t)

n(t) = ne(t) + jns(t) = NOEN O —jorfst

e The in-phase and quadrature components of n(t) are given by

1 . .
n(t) = E[n,,(t)cos27rfct—s—np(t)sm27rfcz‘]

1 .
ns(t) = ﬁ[n,,(z‘)cosZTrfctfnp(t)sm27rfct]

e nc(t) and ns(t) are jointly Gaussian and i.i.d. random processes
(Proof in Proakis Section 2.9)

e Random processes X(t) and Y(t) are jointly Gaussian if any n,m € Z*
and ty, b, ..., t, i, 13, ..., th € R, the random variables
X(t), X(k),...,X(t), Y(t]), Y (1), ..., Y(t,) are jointly Gaussian
random variables.



Complex Envelope PSD

Do f—f<w
= 2 ¢
Snp(1) { 0 otherwise

Passband Gaussian Noise PSD

r ‘ A i

No |fl <W

Recall th W(F) =28, (f + £, f+f n(f) =
ecall that S,(f) Sn,(F+ f)u(f + o) = Su(f) {O otherwise

Complex Envelope PSD

No




Complex Envelope PSD

e By the independence of n¢(t) and ns(t), we have

Ro(r) = E[n(t +7)n"(1)] = Rae(7)+Rn(1) = Sn(f) = Snc(f)+Sn(f)

e As nc(t) and ns(t) are identically distributed, we get

Il < W

No
Sne(f) = Sns(f) = { 0 otherwise

In-Phase and Quadrature Component PSDs

e If n;(t) and ns(t) are approximated by white Gaussian noise, n(t) is
said to be complex white Gaussian noise
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Complex White Gaussian Noise

Definition
Real random processes X(t) and Y(t) are jointly Gaussian if any n,m € Z*
and ty, b, ..., b, 4, 4, ..., t, € R, the random variables

X(t), X(k),...,X(t), Y(t]), Y(),..., Y(t,) are jointly Gaussian random
variables.

Definition (Complex Gaussian Random Process)

A complex random process Z(t) = X(t) + jY(t) is a complex Gaussian
random process if X(t) and Y(t) are jointly Gaussian random processes.

Definition (Complex White Gaussian Noise)

A complex Gaussian random process Z(t) = X(t) + jY(t) is complex white
Gaussian noise with PSD N, if X(t) and Y(t) are independent white
Gaussian noise processes with PSD %
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Optimal Receiver using Signal Space Representation

e The continuous time hypothesis testing problem in complex baseband
Hi:y(t)=si(t)+n), i=1,....M
where

y(t) Complex envelope of y,(t)
si(t) Complex envelope of s; ,(t)
n(t) Complex white Gaussian noise with PSD Ny = 202

e The equivalent problem in terms of complex random vectors
H:Y=s;+N, i=1,....M
where Y, s; and N are the projections of y(t), si(t) and n(t) respectively
onto the signal space spanned by {si(f)}.
e Nis a vector of complex Gaussian random variables

Ne,1 + jNs 1
Ne,2 + jNs 2

Ne k + jNs k
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Optimal Receiver using Signal Space Representation

e Each component of N has independent real and imaginary parts
e Different components are also independent of each other
e The K x 1 complex vectors in Y = s; + N, that is

Yi Si1 N;

=t

Yk Si K Nk
can be written as 2K x 1 real vectors

[Yie] [Sit,c] TNy ]
Yis Si1,s Nj s
Yz,c Si2,c Nz,c
Yos | = [ Sias| 4 | MNas
Yk,c SiK,c Nk ¢

_YK,s_ _Si,K,s_ _NK,s_

where Y/,C = Re (Y/) , Y/‘,s =1Im (Y/) y Sij,c = Re (S,‘y/) y Sij,s =
Im (s1,1) ; Nj.c = Re (N)) ; Nj,s = Im (N))
e The joint pdf of the real Gaussian random vectors can be used for

performance analysis
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ML Receiver for QPSK

e QPSK signals where q(t) is a real baseband pulse, A is a real number
and1<i<4

sip(t) = V2Aq(t)cos (27”‘02‘_._ w>
= Re |:\/§Aq(t)ef(2ﬂfct+@):|

mw(2i—1)

Re {\@Aq(z‘)e’ 7 ef(ZWfC')}

e Complex Envelope of QPSK Signals
cw(2i—1)

si(t) = Aq(t)e!~+, 1<i<4

e Orthonormal basis for the complex envelope consists of only

o(t) =

where E; = ||q|?
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ML Receiver for QPSK

Let vE, = Aéq. The vector representation of the QPSK signals is
si = VE+jVE
s = —VE+jVE
ss = —VE—jVE
ss = VE-jVE

The hypothesis testing problem in terms of vectors is

. Ye _ | Sic Nc .
H [vs]*[s,k[/vj’ i=1,....4
where s; ;. = Re(s)), 8i,s = Im(s;), Ne ~ N(0,5%), Ns ~ N(0,6%), No L Ns

The ML rule is given by

sm(y) = argmin (ye — si.c)® + (¥s — Si.s)* = argmin [ly — si||*
1<i<4 1<i<4
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