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Passband Signals in Passband Noise
Consider M-ary passband signaling over a channel with passband Gaussian
noise

Hi : yp(t) = si,p(t) + np(t), i = 1, . . . ,M

where

yp(t) Real passband received signal

si,p(t) Real passband signals

np(t) Real passband GN with PSD N0
2

−fc fc f

N0
2

Signal
Noise

Note: A WSS random process is passband if its autocorrelation function is a
passband signal
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Passband Signals in Passband Noise
Consider M-ary passband signaling over a channel with passband Gaussian
noise

Hi : yp(t) = si,p(t) + np(t), i = 1, . . . ,M

where

yp(t) Real passband received signal

si,p(t) Real passband signals

np(t) Real passband GN with PSD N0
2

The equivalent problem in complex baseband is

Hi : y(t) = si(t) + n(t), i = 1, . . . ,M

where

y(t) Complex envelope of yp(t)

si(t) Complex envelope of si,p(t)

n(t) Complex envelope of np(t)

What is the optimal receiver in terms of the complex baseband signals?
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Optimal Receiver in AWGN using Complex Envelopes

• Optimal receiver using passband representations

δMPE(yp) = argmax
1≤i≤M

〈yp, si,p〉 −
‖si,p‖2

2
+ σ2 logπi

• Recall that 〈up, vp〉 = Re (〈u, v〉) and ‖up‖2 = ‖u‖2

• Optimal receiver using complex baseband representations

δMPE(y) = argmax
1≤i≤M

Re (〈y , si〉)−
‖si‖2

2
+ σ2 logπi

where y(t), si(t) are the complex envelopes of yp(t), si,p(t) respectively

• But what about the performance analysis?

• We need to understand the statistics of n(t), the complex envelope of
the passband Gaussian noise process np(t)
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Complex Envelope of Passband Gaussian Noise

• The complex baseband representation of np(t) is given by

n(t) = nc(t) + jns(t) =
1√
2
[np(t) + j n̂p(t)] e −j2πfc t

where n̂p(t) is the Hilbert transform of np(t)

• The in-phase and quadrature components of n(t) are given by

nc(t) =
1√
2
[np(t) cos 2πfc t + n̂p(t) sin 2πfc t ]

ns(t) =
1√
2
[n̂p(t) cos 2πfc t − np(t) sin 2πfc t ]

• nc(t) and ns(t) are jointly Gaussian and i.i.d. random processes
(Proof in Proakis Section 2.9)

• Random processes X (t) and Y (t) are jointly Gaussian if any n,m ∈ Z+

and t1, t2, . . . , tn, t ′1, t
′
2, . . . , t

′
m ∈ R, the random variables

X (t1),X (t2), . . . ,X (tn),Y (t ′1),Y (t ′2), . . . ,Y (t ′m) are jointly Gaussian
random variables.

5 / 13



Complex Envelope PSD

Snp (f ) =
{ N0

2 |f − fc | < W
0 otherwise

−fc fc f

N0
2

Passband Gaussian Noise PSD

Recall that Sn(f ) = 2Snp (f + fc)u(f + fc) =⇒ Sn(f ) =

{
N0 |f | < W
0 otherwise

−fc fc f

N0

Complex Envelope PSD
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Complex Envelope PSD

• By the independence of nc(t) and ns(t), we have

Rn(τ) = E [n(t + τ)n∗(t)] = Rnc (τ)+Rns (τ) =⇒ Sn(f ) = Snc (f )+Sns (f )

• As nc(t) and ns(t) are identically distributed, we get

Snc (f ) = Sns (f ) =
{ N0

2 |f | < W
0 otherwise

−fc fc f

N0
2

In-Phase and Quadrature Component PSDs

• If nc(t) and ns(t) are approximated by white Gaussian noise, n(t) is
said to be complex white Gaussian noise
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Complex White Gaussian Noise

Definition
Real random processes X (t) and Y (t) are jointly Gaussian if any n,m ∈ Z+

and t1, t2, . . . , tn, t ′1, t
′
2, . . . , t

′
m ∈ R, the random variables

X (t1),X (t2), . . . ,X (tn),Y (t ′1),Y (t ′2), . . . ,Y (t ′m) are jointly Gaussian random
variables.

Definition (Complex Gaussian Random Process)
A complex random process Z (t) = X (t) + jY (t) is a complex Gaussian
random process if X (t) and Y (t) are jointly Gaussian random processes.

Definition (Complex White Gaussian Noise)
A complex Gaussian random process Z (t) = X (t) + jY (t) is complex white
Gaussian noise with PSD N0 if X (t) and Y (t) are independent white
Gaussian noise processes with PSD N0

2 .
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Optimal Receiver using Signal Space Representation

• The continuous time hypothesis testing problem in complex baseband

Hi : y(t) = si(t) + n(t), i = 1, . . . ,M

where

y(t) Complex envelope of yp(t)
si(t) Complex envelope of si,p(t)
n(t) Complex white Gaussian noise with PSD N0 = 2σ2

• The equivalent problem in terms of complex random vectors

Hi : Y = si + N, i = 1, . . . ,M

where Y, si and N are the projections of y(t), si(t) and n(t) respectively
onto the signal space spanned by {si(t)}.

• N is a vector of complex Gaussian random variables

N =


Nc,1 + jNs,1

Nc,2 + jNs,2
...

Nc,K + jNs,K
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Optimal Receiver using Signal Space Representation
• Each component of N has independent real and imaginary parts
• Different components are also independent of each other
• The K × 1 complex vectors in Y = si + N, that isY1

...
YK

 =

si,1
...

si,K

+

N1
...

NK


can be written as 2K × 1 real vectors

Y1,c

Y1,s

Y2,c

Y2,s
...

YK ,c

YK ,s


=



si,1,c

si,1,s

si,2,c

si,2,s
...

si,K ,c

si,K ,s


+



N1,c

N1,s

N2,c

N2,s
...

NK ,c

NK ,s


where Yj,c = Re (Yj) ,Yj,s = Im (Yj) , si,j,c = Re (si,j) , si,j,s =
Im (si,j) ,Nj,c = Re (Nj) ,Nj,s = Im (Nj)

• The joint pdf of the real Gaussian random vectors can be used for
performance analysis
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ML Receiver for QPSK

• QPSK signals where q(t) is a real baseband pulse, A is a real number
and 1 ≤ i ≤ 4

si,p(t) =
√

2Aq(t) cos
(

2πfc t +
π(2i − 1)

4

)
= Re

[√
2Aq(t)e j

(
2πfc t+π(2i−1)

4

)]
= Re

[√
2Aq(t)e j π(2i−1)

4 e j(2πfc t)
]

• Complex Envelope of QPSK Signals

si(t) = Aq(t)e j π(2i−1)
4 , 1 ≤ i ≤ 4

• Orthonormal basis for the complex envelope consists of only

φ(t) =
q(t)√

Eq

where Eq = ‖q‖2
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ML Receiver for QPSK
Let
√

Eb =
A
√

Eq√
2

. The vector representation of the QPSK signals is

s1 =
√

Eb + j
√

Eb

s2 = −
√

Eb + j
√

Eb

s3 = −
√

Eb − j
√

Eb

s4 =
√

Eb − j
√

Eb

The hypothesis testing problem in terms of vectors is

Hi :

[
Yc

Ys

]
=

[
si,c

si,s

]
+

[
Nc

Ns

]
, i = 1, . . . , 4

where si,c = Re(si), si,s = Im(si), Nc ∼ N (0, σ2), Ns ∼ N (0, σ2), Nc ⊥ Ns

The ML rule is given by

δML(y) = argmin
1≤i≤4

(yc − si,c)
2 + (ys − si,s)

2 = argmin
1≤i≤4

‖y− si‖2
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