Parameter Estimation

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay



System Model used to Derive Optimal Receivers

$$s(t) \longrightarrow \boxed{\text{Channel}} \longrightarrow y(t)$$
$$y(t) = s(t) + n(t)$$

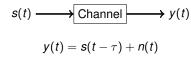
- s(t) Transmitted Signal
- y(t) Received Signal
- n(t) Noise

Simplified System Model. Does Not Account For

- Propagation Delay
- Carrier Frequency Mismatch Between Transmitter and Receiver
- Clock Frequency Mismatch Between Transmitter and Receiver

Why Study the Simplified System Model?

Consider the effect of propagation delay



- If the receiver can estimate τ , the simplified system model is valid
- Receivers estimate propagation delay, carrier frequency and clock frequency before demodulation
- Once these unknown parameters are estimated, the simplified system model is valid
- Then why not study parameter estimation first?
 - Hypothesis testing is easier to learn than parameter estimation
 - Historical reasons

Parameter Estimation

Parameter Estimation

- Hypothesis testing was about making a choice between discrete states of nature
- Parameter or point estimation is about choosing from a continuum of possible states

Example

- Consider a manufacturer of clothes for newborn babies
- She wants her clothes to fit at least 50% of newborn babies. Clothes can be loose but not tight. She also wants to minimize material used.
- Since babies are made up of a large number of atoms, their length is a Gaussian random variable (by Central Limit Theorem)

Baby Length
$$\sim \mathcal{N}(\mu, \sigma^2)$$

- Only knowledge of μ is required to achieve her goal of 50% fit
- But μ is unknown and she is interested in estimating it
- What is a good estimator of μ ? If she wants her clothes to fit at least 75% of the newborn babies, is knowledge of μ enough?

System Model for Parameter Estimation

Consider a family of distributions

$$\mathbf{Y} \sim P_{\boldsymbol{\theta}}, \quad \boldsymbol{\theta} \in \Lambda$$

where the observation vector $\mathbf{Y} \in \Gamma \subseteq \mathbb{R}^n$ and $\Lambda \subseteq \mathbb{R}^m$ is the parameter space. $\boldsymbol{\theta}$ itself can be a realization of a random variable $\boldsymbol{\Theta}$

Example

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

where μ and σ are unknown. Here $\Gamma = \mathbb{R}$, $\theta = \begin{bmatrix} \mu & \sigma \end{bmatrix}^T$, $\Lambda = \mathbb{R}^2$. The parameters μ and σ can themselves be random variables.

- The goal of parameter estimation is to find θ given **Y**
- An estimator is a function from the observation space to the parameter space

$$\hat{\boldsymbol{\theta}}:\Gamma \to \Lambda$$

Which is the Optimal Estimator?

Assume there is a cost function C

$$C: \Lambda \times \Lambda \to \mathbb{R}$$

such that $C[\mathbf{a}, \theta]$ is the cost of estimating the true value of θ as \mathbf{a}

• Examples of cost functions for scalar θ

Squared Error
$$C[a, \theta] = (a - \theta)^2$$

Absolute Error $C[a, \theta] = |a - \theta|$
Threshold Error $C[a, \theta] = \begin{cases} 0 & \text{if } |a - \theta| \leq \Delta \\ 1 & \text{if } |a - \theta| > \Delta \end{cases}$

Which is the Optimal Estimator?

- Suppose that the parameter θ is the realization of a random variable Θ
- With an estimator $\hat{\theta}$ we associate a conditional cost or risk conditioned on θ

$$r_{\theta}(\hat{\theta}) = E_{\theta} \left\{ C \left[\hat{\theta}(\mathbf{Y}), \theta \right] \right\}$$

The average risk or Bayes risk is given by

$$R(\hat{\theta}) = E\left\{r_{\Theta}(\hat{\theta})\right\}$$

The optimal estimator is the one which minimizes the Bayes risk

Which is the Optimal Estimator?

Given that

$$r_{\theta}(\hat{\theta}) = E_{\theta} \left\{ C \left[\hat{\theta}(\mathbf{Y}), \theta \right] \right\} = E \left\{ C \left[\hat{\theta}(\mathbf{Y}), \Theta \right] \middle| \Theta = \theta \right\}$$

the average risk or Bayes risk is given by

$$\begin{split} R(\hat{\theta}) &= E\left\{C\left[\hat{\theta}(\mathbf{Y}), \Theta\right]\right\} \\ &= E\left\{E\left\{C\left[\hat{\theta}(\mathbf{Y}), \Theta\right] \middle| \mathbf{Y}\right\}\right\} \\ &= \int E\left\{C\left[\hat{\theta}(\mathbf{Y}), \Theta\right] \middle| \mathbf{Y} = \mathbf{y}\right\} p_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} \end{split}$$

• The optimal estimate for θ can be found by minimizing for each $\mathbf{Y} = \mathbf{y}$ the posterior cost

$$E\left\{ C\left[\hat{oldsymbol{ heta}}(\mathbf{y}),\mathbf{\Theta}
ight]\left|\mathbf{Y}=\mathbf{y}
ight\}$$

Minimum-Mean-Squared-Error (MMSE) Estimation

- Consider a scalar parameter θ
- $C[a, \theta] = (a \theta)^2$
- The posterior cost is given by

$$\begin{split} E\left\{ \left(\hat{\theta}(\mathbf{y}) - \Theta\right)^2 \middle| \mathbf{Y} = \mathbf{y} \right\} &= \left[\hat{\theta}(\mathbf{y}) \right]^2 \\ &- 2\hat{\theta}(\mathbf{y}) E\left\{ \Theta \middle| \mathbf{Y} = \mathbf{y} \right\} \\ &+ E\left\{ \Theta^2 \middle| \mathbf{Y} = \mathbf{y} \right\} \end{split}$$

• Differentiating posterior cost wrt $\hat{\theta}(\mathbf{y})$, the Bayes estimate is

$$\hat{\theta}_{MMSE}(\mathbf{y}) = E\left\{\Theta\middle|\mathbf{Y} = \mathbf{y}\right\}$$

Example: MMSE Estimation

- Suppose X and Y are jointly Gaussian random variables
- Let the joint pdf be given by

$$p_{XY}(x,y) = \frac{1}{2\pi |\mathbf{C}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{s} - \boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{s} - \boldsymbol{\mu})\right)$$

where
$$\mathbf{s} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$
, $\boldsymbol{\mu} = \begin{bmatrix} \mu_{\mathbf{x}} \\ \mu_{\mathbf{y}} \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} \sigma_{\mathbf{x}}^2 & \rho \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} \\ \rho \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} & \sigma_{\mathbf{y}}^2 \end{bmatrix}$

- Suppose Y is observed and we want to estimate X
- The MMSE estimate of X is

$$\hat{X}_{MMSE}(y) = E |X|Y = y$$

The conditional density of X given Y = y is

$$p(x|y) = \frac{p_{XY}(x,y)}{p_Y(y)}$$

Example: MMSE Estimation

 The conditional density of X given Y = y is a Gaussian density with mean

$$\mu_{X|y} = \mu_X + \frac{\sigma_X}{\sigma_y} \rho(y - \mu_y)$$

and variance

$$\sigma_{X|y}^2 = (1 - \rho^2)\sigma_x^2$$

• Thus the MMSE estimate of X given Y = y is

$$\hat{X}_{MMSE}(y) = \mu_{x} + \frac{\sigma_{x}}{\sigma_{y}} \rho(y - \mu_{y})$$

- In some situations, the conditional mean may be difficult to compute
- An alternative is to use MAP estimation
- The MAP estimator is given by

$$\hat{\boldsymbol{\theta}}_{MAP}(\mathbf{y}) = \operatorname*{argmax}_{\boldsymbol{\theta}} p\left(\boldsymbol{\theta}|\mathbf{y}\right)$$

where p is the conditional density of Θ given \mathbf{Y} .

 It can be obtained as the optimal estimator for the threshold cost function

$$C[a, \theta] = \begin{cases} 0 & \text{if } |a - \theta| \le \Delta \\ 1 & \text{if } |a - \theta| > \Delta \end{cases}$$

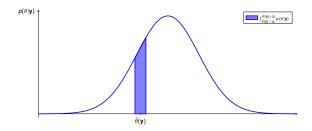
for small $\Delta > 0$

For the threshold cost function, we have¹

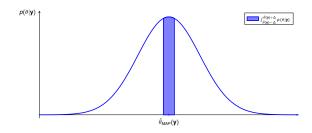
$$\begin{split} E\left\{C\left[\hat{\theta}(\mathbf{y}),\Theta\right] \middle| \mathbf{Y} &= \mathbf{y}\right\} \\ &= \int_{-\infty}^{\infty} C[\hat{\theta}(\mathbf{y}),\theta] p\left(\theta \middle| \mathbf{y}\right) \ d\theta \\ &= \int_{-\infty}^{\hat{\theta}(\mathbf{y})-\Delta} p\left(\theta \middle| \mathbf{y}\right) \ d\theta + \int_{\hat{\theta}(\mathbf{y})+\Delta}^{\infty} p\left(\theta \middle| \mathbf{y}\right) \ d\theta \\ &= \int_{-\infty}^{\infty} p\left(\theta \middle| \mathbf{y}\right) \ d\theta - \int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p\left(\theta \middle| \mathbf{y}\right) \ d\theta \\ &= 1 - \int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p\left(\theta \middle| \mathbf{y}\right) \ d\theta \end{split}$$

 The Bayes estimate is obtained by maximizing the integral in the last equality

¹Assume a scalar parameter θ for illustration



- The shaded area is the integral $\int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p(\theta|\mathbf{y}) \ d\theta$
- To maximize this integral, the location of $\hat{\theta}(\mathbf{y})$ should be chosen to be the value of θ which maximizes $p(\theta|\mathbf{y})$



- This argument is not airtight as $p(\theta|\mathbf{y})$ may not be symmetric at the maximum
- But the MAP estimator is widely used as it is easier to compute than the MMSE estimator

Maximum Likelihood (ML) Estimation

The ML estimator is given by

$$\hat{\boldsymbol{\theta}}_{\mathit{ML}}(\mathbf{y}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \boldsymbol{\rho}(\mathbf{y}|\boldsymbol{\theta})$$

where p is the conditional density of **Y** given Θ .

 It is the same as the MAP estimator when the prior probability distribution of Θ is uniform

$$\hat{\theta}_{\textit{MAP}}(\mathbf{y}) = \operatorname*{argmax}_{\theta} \rho\left(\theta | \mathbf{y}\right) = \operatorname*{argmax}_{\theta} \frac{\rho\left(\theta, \mathbf{y}\right)}{\rho(\mathbf{y})} = \operatorname*{argmax}_{\theta} \frac{\rho\left(\mathbf{y} | \theta\right) \rho(\theta)}{\rho(\mathbf{y})}$$

It is also used when the prior distribution is not known

Example 1: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

where Y_i 's are independent, μ is unknown and σ^2 is known

• The ML estimate is given by

$$\hat{\mu}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Example 2: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim \mathcal{N}(\mu, \sigma^2)$$

where Y_i 's are independent, both μ and σ^2 are unknown

• The ML estimates are given by

$$\hat{\mu}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

$$\hat{\sigma}_{ML}^2(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} (y_i - \hat{\mu}_{ML}(\mathbf{y}))^2$$

Example 3: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim \text{Bernoulli}(p)$$

where Y_i 's are independent and p is unknown

• The ML estimate of p is given by

$$\hat{p}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Example 4: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim \mathsf{Uniform}[0, \theta]$$

where Y_i 's are independent and θ is unknown

• The ML estimate of θ is given by

$$\hat{\theta}_{ML}(\mathbf{y}) = \max(y_1, y_2, \dots, y_{M-1}, y_M)$$

References

- Sections 4.1, 4.2, Fundamentals of Digital Communication, Upamanyu Madhow, 2008
- Chapter 4, An Introduction to Signal Detection and Estimation, H. V. Poor, Second Edition, Springer Verlag, 1994.