Performance of ML Receiver for M-ary Signaling

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Performance of ML Decision Rule for M-ary signaling

ML Decision Rule for M-ary Signaling

- M equally likely hypotheses

$$
\begin{array}{clc}
H_{1} & : & y(t)=s_{1}(t)+n(t) \\
H_{2} & : & y(t)=s_{2}(t)+n(t) \\
\vdots & & \vdots \\
H_{M} & : & y(t)=s_{M}(t)+n(t)
\end{array}
$$

- The ML decision rule for real AWGN channel is

$$
\delta_{M L}(y)=\underset{1 \leq i \leq M}{\operatorname{argmin}}\left\|y-s_{i}\right\|^{2}=\underset{1 \leq i \leq M}{\operatorname{argmax}}\left\langle y, s_{i}\right\rangle-\frac{\left\|s_{i}\right\|^{2}}{2}
$$

- The ML decision rule for complex AWGN channel is

$$
\delta_{M L}(y)=\underset{1 \leq i \leq M}{\operatorname{argmin}}\left\|y-s_{i}\right\|^{2}=\underset{1 \leq i \leq M}{\operatorname{argmax}} \operatorname{Re}\left(\left\langle y, s_{i}\right\rangle\right)-\frac{\left\|s_{i}\right\|^{2}}{2}
$$

- For $M=2$, we found that $P_{e}=Q\left(\frac{\left\|s_{1}-s_{2}\right\|}{2 \sigma}\right)$
- In general, there is no neat expression for P_{e} as in the binary case

QPSK

- QPSK signals where $q(t)$ is a real baseband pulse of duration T

$$
\begin{aligned}
& s_{1, p}(t)=\sqrt{2} q(t) \cos \left(2 \pi f_{c} t+\frac{\pi}{4}\right) \\
& s_{2, p}(t)=\sqrt{2} q(t) \cos \left(2 \pi f_{c} t+\frac{3 \pi}{4}\right) \\
& s_{3, p}(t)=\sqrt{2} q(t) \cos \left(2 \pi f_{c} t+\frac{5 \pi}{4}\right) \\
& s_{4, p}(t)=\sqrt{2} q(t) \cos \left(2 \pi f_{c} t+\frac{7 \pi}{4}\right)
\end{aligned}
$$

- Complex envelopes of QPSK Signals

$$
s_{1}(t)=q(t) e^{j \frac{\pi}{4}}, s_{2}(t)=q(t) e^{j \frac{3 \pi}{4}}, s_{3}(t)=q(t) e^{j \frac{5 \pi}{4}}, s_{4}(t)=q(t) e^{j \frac{j \pi}{4}}
$$

- Orthonormal basis for the complex envelopes consists of only

$$
\phi(t)=\frac{q(t)}{\sqrt{E_{q}}}
$$

ML Receiver for QPSK

- $E_{b}=E_{q} / 2 \Longrightarrow \sqrt{E_{b}}=\sqrt{E_{q}} / \sqrt{2}$
- The vector representation of the QPSK signals is

$$
\begin{aligned}
& s_{1}=\sqrt{E_{b}}+j \sqrt{E_{b}} \\
& s_{2}=-\sqrt{E_{b}}+j \sqrt{E_{b}} \\
& s_{3}=-\sqrt{E_{b}}-j \sqrt{E_{b}} \\
& s_{4}=\sqrt{E_{b}}-j \sqrt{E_{b}}
\end{aligned}
$$

- The hypothesis testing problem is

$$
\begin{gathered}
H_{i}: Y=s_{i}+N, \quad i=1, \ldots, 4 \\
\text { where } N=N_{c}+j N_{s}, N_{c} \sim \mathcal{N}\left(0, \sigma^{2}\right), N_{s} \sim \mathcal{N}\left(0, \sigma^{2}\right), N_{c} \perp N_{s}
\end{gathered}
$$

- The ML decision rule is given by

$$
\delta_{M L}(y)=\underset{1 \leq i \leq 4}{\operatorname{argmin}}\left\|y-s_{i}\right\|^{2}=\underset{1 \leq i \leq 4}{\operatorname{argmax}}\left[\operatorname{Re}\left(\left\langle y, s_{i}\right\rangle\right)-\frac{\left\|s_{i}\right\|^{2}}{2}\right]
$$

- The ML decision rule decides s_{i} was transmitted if y belongs to the i th quadrant

ML Decision Rule for QPSK

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[\left(\underset{1 \leq i \leq 4}{\operatorname{argmin}}\left\|Y-s_{i}\right\|^{2}\right) \neq 1 \mid\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right) \text { was sent }\right] \\
& =\operatorname{Pr}\left[\left.\left(\underset{1 \leq i \leq 4}{\operatorname{argmax}} \operatorname{Re}\left(\left\langle Y, s_{i}\right\rangle\right)-\frac{\left\|s_{i}\right\|^{2}}{2}\right) \neq 1 \right\rvert\,\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right) \text { was sent }\right] \\
& =\operatorname{Pr}\left[Y_{c}<0 \text { or } Y_{s}<0 \mid\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right) \text { was sent }\right]
\end{aligned}
$$

ML Decision Rule for QPSK

- Probability of error when s_{1} is transmitted is

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[Y_{c}<0 \text { or } Y_{s}<0 \mid\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right) \text { was sent }\right] \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

- By symmetry,

$$
P_{e \mid 1}=P_{e \mid 2}=P_{e \mid 3}=P_{e \mid 4}
$$

- The average probability of error is

$$
P_{e}=\frac{1}{4} \sum_{i=1}^{4} P_{e \mid i}=P_{e \mid 1}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

ML Decision Rule for 16-QAM

16-QAM

Exact analysis is tedious. Approximate analysis is sufficient.

Revisiting the Q function

Revisiting the Q function

$X \sim N(0,1)$

$$
Q(x)=P[X>x]=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

Bounds on $Q(x)$ for Large Arguments

$$
\begin{equation*}
\left(1-\frac{1}{x^{2}}\right) \frac{e^{-\frac{x^{2}}{2}}}{x \sqrt{2 \pi}} \leq Q(x) \leq \frac{e^{-\frac{x^{2}}{2}}}{x \sqrt{2 \pi}} \tag{1}
\end{equation*}
$$

Q Functions with Smallest Arguments Dominate

- P_{e} in AWGN channels can be bounded by a sum of Q functions
- The Q function with the smallest argument is used to approximate P_{e}

Union Bound

Union Bound for M-ary Signaling in AWGN

- Let Z_{i} be $\left\langle y, s_{i}\right\rangle-\frac{\left\|s_{i}\right\|^{2}}{2}$ or $\operatorname{Re}\left(\left\langle y, s_{i}\right\rangle\right)-\frac{\left\|s_{i}\right\|^{2}}{2}$
- The conditional error probability given H_{i} is true is

$$
P_{e \mid i}=\operatorname{Pr}\left[\bigcup_{j \neq i}\left\{Z_{i}<Z_{j}\right\} \mid H_{i}\right]
$$

- Since $P(A \cup B) \leq P(A)+P(B)$, we have

$$
P_{e \mid i} \leq \sum_{j \neq i} \operatorname{Pr}\left[Z_{i}<Z_{j} \mid H_{i}\right]=\sum_{j \neq i} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
$$

- The error probability is given by

$$
P_{e}=\frac{1}{M} \sum_{i=1}^{M} P_{e \mid i} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \neq i} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
$$

Union Bound for QPSK

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[\cup_{j \neq 1}\left\{Z_{1}<Z_{j}\right\} \mid H_{1}\right] \leq \sum_{j \neq 1} \operatorname{Pr}\left[Z_{1}<Z_{j} \mid H_{1}\right] \\
P_{e \mid 1} & \leq Q\left(\frac{\left\|s_{2}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{3}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{4}-s_{1}\right\|}{2 \sigma}\right) \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Union Bound for QPSK

- Union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
$$

- Exact error probability of ML rule

$$
P_{e}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Union Bound and Exact Error Probability for QPSK

Intelligent Union Bound

QPSK Error Events

$$
E_{1}=\left[Z_{2}>Z_{1}\right] \cup\left[Z_{3}>Z_{1}\right] \cup\left[Z_{4}>Z_{1}\right]=\left[Z_{2}>Z_{1}\right] \cup\left[Z_{4}>Z_{1}\right]
$$

Intelligent Union Bound for QPSK

- Intelligent union bound on $P_{e \mid 1}$

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[\left(Z_{2}>Z_{1}\right) \cup\left(Z_{4}>Z_{1}\right) \mid H_{1}\right] \\
& \leq \operatorname{Pr}\left[Z_{2}>Z_{1} \mid H_{1}\right]+\operatorname{Pr}\left[Z_{4}>Z_{1} \mid H_{1}\right] \\
& =Q\left(\frac{\left\|s_{2}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{4}-s_{1}\right\|}{2 \sigma}\right) \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

- By symmetry $P_{e \mid 1}=P_{e \mid 2}=P_{e \mid 3}=P_{e \mid 4}$ and

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Intelligent Union Bound and Exact Error Probability for QPSK

General Strategy for Intelligent Union Bound

- Let $N_{M L}(i)$ be the smallest set of neighbors of s_{i} which define the decision region Γ_{i}

$$
\Gamma_{i}=\left\{y \mid \delta_{M L}(y)=i\right\}=\left\{y \mid z_{i} \geq z_{j} \text { for all } j \in N_{M L}(i)\right\}
$$

- Probability of error when s_{i} is transmitted is

$$
\begin{aligned}
P_{e \mid i} & =\operatorname{Pr}\left[Y \notin \Gamma_{i} \mid H_{i}\right]=\operatorname{Pr}\left[Z_{i}<Z_{j} \text { for some } j \in N_{M L}(i) \mid H_{i}\right] \\
& \leq \sum_{j \in N_{M L}(i)} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
\end{aligned}
$$

- Average probability of error is bounded by

$$
P_{e} \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{j \in N_{M L}(i)} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
$$

Intelligent Union Bound for 16-QAM

Assignment!

Nearest Neighbors Approximation

Nearest Neighbors Approximation

- Let $d_{\text {min }}$ be the minimum distance between constellation points

$$
d_{\text {min }}=\min _{i \neq j}\left\|s_{i}-s_{j}\right\|
$$

- Let $N_{d_{\text {min }}}(i)$ denote the number of nearest neighbors of s_{i}

$$
P_{e \mid i} \approx N_{d_{\min }}(i) Q\left(\frac{d_{\min }}{2 \sigma}\right)
$$

- Averaging over i we get

$$
P_{e} \approx \bar{N}_{d_{m i n}} Q\left(\frac{d_{\min }}{2 \sigma}\right)
$$

where $\bar{N}_{d_{\text {min }}}$ denotes the average number of nearest neighbors

Nearest Neighbors Approximation for QPSK

$$
\begin{aligned}
& d_{\text {min }}=2 \sqrt{E_{b}}, \quad N_{d_{\text {min }}}(1)=2=\bar{N}_{d_{\text {min }}} \\
& P_{e} \approx \bar{N}_{d_{\text {min }}} Q\left(\frac{d_{\text {min }}}{2 \sigma}\right)=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Summary of results for QPSK

- Exact error probability of ML rule

$$
P_{e}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

- Union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
$$

- Intelligent union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

- Nearest neighbors approximation of error probability of ML rule

$$
P_{e} \approx 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Nearest Neighbors Approximation for 16-QAM

Assignment!

References

- Section 3.5.2, Fundamentals of Digital Communication, Upamanyu Madhow, 2008

