Phase and Timing Synchronization

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

The System Model

• Consider the following complex baseband signal *s*(*t*)

$$s(t) = \sum_{i=0}^{K-1} b_i p(t-iT)$$

where b_i's are complex symbols

• Suppose the LO frequency at the transmitter is fc

$$s_{
ho}(t) = \operatorname{\mathsf{Re}}\left[\sqrt{2}s(t)e^{j2\pi f_{c}t}
ight].$$

- Suppose that the LO frequency at the receiver is $f_c \Delta f$
- The received passband signal is

$$y_{\rho}(t) = As_{\rho}(t-\tau) + n_{\rho}(t)$$

• The complex baseband representation of the received signal is then

$$y(t) = Ae^{j(2\pi\Delta ft+\theta)}s(t-\tau) + n(t)$$

The System Model

$$y(t) = Ae^{j(2\pi\Delta ft+\theta)} \sum_{i=0}^{K-1} b_i p(t-iT-\tau) + n(t)$$

- The unknown parameters are A, τ , θ and Δf Timing Synchronization Estimation of τ Carrier Synchronization Estimation of θ and Δf
- The preamble of a packet contains known symbols called the training sequence
- The *b_i*'s are known during the preamble

Carrier Phase Estimation

- The change in phase due to the carrier offset Δf is 2πΔfT in a symbol interval T
- The phase can be assumed to be constant over multiple symbol intervals
- Assume that the phase θ is the only unknown parameter
- Assume that s(t) is a known signal in the following

$$y(t) = s(t)e^{j\theta} + n(t)$$

The likelihood function for this scenario is given by

$$L(y|\theta) = \exp\left(\frac{1}{\sigma^2}\left[\mathsf{Re}(\langle y, se^{j\theta} \rangle) - \frac{\|se^{j\theta}\|^2}{2}\right]\right)$$

• Let $\langle y, s \rangle = Z = |Z|e^{j\phi} = Z_c + jZ_s$

$$\begin{array}{lll} \langle y, se^{j\theta} \rangle & = & e^{-j\theta}Z = |Z|e^{j(\phi-\theta)}\\ \mathsf{Re}(\langle y, se^{j\theta} \rangle) & = & |Z|\cos(\phi-\theta)\\ \|se^{j\theta}\|^2 & = & \|s\|^2 \end{array}$$

Carrier Phase Estimation

The likelihood function for this scenario is given by

$$L(y|s_{\theta}) = \exp\left(rac{1}{\sigma^2}\left[|Z|\cos(\phi- heta) - rac{\|s\|^2}{2}
ight]
ight)$$

The ML estimate of θ is given by

$$\hat{ heta}_{ML} = \phi = \arg(\langle y, s \rangle) = \tan^{-1} rac{Z_s}{Z_c}$$

Phase Locked Loop

- The carrier offset will cause the phase to change slowly
- A tracking mechanism is required to track the changes in phase
- · For simplicity, consider an unmodulated carrier

$$y_{\rho}(t) = \sqrt{2}\cos(2\pi f_{c}t + \theta(t)) + n_{\rho}(t)$$

The complex baseband representation is

$$y(t) = e^{j\theta(t)} + n(t)$$

• For an observation interval To, the log likelihood function is given by

$$\ln L(y|\theta) = \frac{1}{\sigma^2} \left[\operatorname{Re}\left(\langle y, e^{j\theta(t)} \rangle \right) - \frac{T_o}{2} \right]$$

• We get $\hat{\theta}_{ML}$ by maximizing

$$J[\theta(t)] = \mathsf{Re}\left(\langle y, e^{j\theta(t)} \rangle\right) = \int_0^{T_o} \left[y_c(t)\cos\theta(t) + y_s(t)\sin\theta(t)\right] dt$$

Phase Locked Loop

• A necessary condition for a maximum at $\hat{\theta}_{ML}$ is

$$\begin{aligned} \frac{\partial}{\partial \theta} J[\theta(t)] \Big|_{\hat{\theta}_{ML}} &= 0 \implies \int_{0}^{T_{o}} \left[-y_{c}(t) \sin \hat{\theta}_{ML} + y_{s}(t) \cos \hat{\theta}_{ML} \right] dt = 0 \\ \implies & \mathsf{Re} \left(\langle y, j e^{j \hat{\theta}_{ML}} \rangle \right) = 0 \\ \implies & \langle y_{\rho}, -\sin(2\pi f_{c} t + \hat{\theta}_{ML}) \rangle = 0 \\ \implies & -\int_{T_{o}} y_{\rho}(t) \sin(2\pi f_{c} t + \hat{\theta}_{ML}) dt = 0 \end{aligned}$$

Symbol Timing Estimation

· Consider the complex baseband received signal

$$y(t) = As(t-\tau)e^{j\theta} + n(t)$$

where A, τ and θ are unknown and s(t) is known

For γ = [τ, θ, A] and s_γ(t) = As(t − τ)e^{jθ}, the likelihood function is

$$L(y|\gamma) = \exp\left(\frac{1}{\sigma^2}\left[\operatorname{\mathsf{Re}}\left(\langle y, s_\gamma\rangle\right) - \frac{\|s_\gamma\|^2}{2}\right]\right)$$

• For a large enough observation interval, the signal energy does not depend on τ and $||s_{\gamma}||^2 = A^2 ||s||^2$

• For $s_{MF}(t) = s^*(-t)$ we have

$$\begin{array}{lll} \langle y, s_{\gamma} \rangle & = & Ae^{-j\theta} \int y(t)s^{*}(t-\tau) \ dt \\ & = & Ae^{-j\theta} \int y(t)s_{MF}(\tau-t) \ dt \\ & = & Ae^{-j\theta}(y \star s_{MF})(\tau) \end{array}$$

Symbol Timing Estimation

Maximizing the likelihood function is equivalent to maximizing the following cost function

$$J(\tau, A, \theta) = \operatorname{\mathsf{Re}}\left(Ae^{-j\theta}(y \star s_{MF})(\tau)\right) - \frac{A^2 \|s\|^2}{2}$$

• For $(y \star s_{MF})(\tau) = Z(\tau) = |Z(\tau)|e^{j\phi(\tau)}$ we have $\operatorname{Re}\left(Ae^{-j\theta}(y \star s_{MF})(\tau)\right) = A|Z(\tau)|\cos(\phi(\tau) - \theta)$

- The maximizing value of θ is equal to $\phi(\tau)$
- Substituting this value of θ gives us the following cost function

$$J(\tau, A) = \underset{\theta}{\operatorname{argmax}} J(\tau, A, \theta) = A|(y \star s_{MF})(\tau)| - \frac{A^2 ||s||^2}{2}$$

Symbol Timing Estimation

• The ML estimator of the delay picks the peak of the matched filter output

 $\hat{\tau}_{ML} = \operatorname*{argmax}_{\tau} |(y \star s_{MF})(\tau)|$

Early-Late Gate Synchronizer

• Timing tracker which exploits symmetry in matched filter output

Early-Late Gate Synchronizer

Matched Filter Output

The values of the early and late samples are equal

Early-Late Gate Synchronizer

The motivation for this structure can be seen from the following approximation

$$rac{dJ(au)}{d au}pprox rac{J(au+\delta)-J(au-\delta)}{2\delta}$$

References

• Section 4.3, *Fundamentals of Digital Communication*, Upamanyu Madhow, 2008