Endsem Exam : 45 points

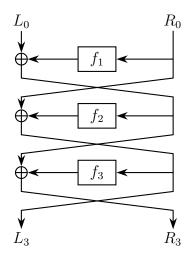
- 1. (a) (2 points) Define perfectly secret encryption schemes. In your definition, use the notation \mathcal{M} for the message space and \mathcal{C} for the ciphertext space.
 - (b) (3 points) Prove that the one-time pad is a perfectly secret encryption scheme.
- 2. (5 points) Let F be a pseudorandom function. Let \parallel denote the concatenation operator, \oplus denote the bitwise XOR operator, and $\langle i \rangle$ denote an n/2-bit encoding of the integer i. To authenticate a message $m = m_1 ||m_2|| \cdots ||m_l$ where $m_i \in \{0, 1\}^{n/2}$, suppose that a MAC computes the tag $t = F_k(\langle 1 \rangle ||m_1) \oplus F_k(\langle 2 \rangle ||m_2) \oplus \cdots \oplus F_k(\langle l \rangle ||m_l)$. Show that this MAC is insecure even if we fix l and do not allow truncation attacks. Fixing l implies that the oracle in the Mac-forge_{A,Π}(n) experiment can only be queried on messages of length ln/2.

Hint: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen-message attack, or just secure, if for all PPT adversaries A, there is a negligible function negl such that:

$$\Pr\left[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1\right] \le \operatorname{negl}(n).$$

The message authentication experiment $Mac-forge_{\mathcal{A},\Pi}(n)$ is defined as follows:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\operatorname{Mac}_k(\cdot)$. The adversary eventually outputs (m, t). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked its oracle.
- 3. \mathcal{A} succeeds if and only if (1) $\operatorname{Vrfy}_k(m,t) = 1$ and (2) $m \notin \mathcal{Q}$. If \mathcal{A} succeeds, the output of the experiment is 1. Otherwise, the output is 0.
- 3. (a) (2 points) Give a construction of a CPA-secure private-key encryption scheme for binary messages of length n.
 - (b) (2 points) Consider the three-round Feistel network shown below where $L_i, R_i \in \{0,1\}^n$ and $f_i : \{0,1\}^n \mapsto \{0,1\}^n$ are known deterministic functions for i = 1, 2, 3. Give expressions for computing L_0, R_0 from L_3, R_3 .



- (c) (2 points) If an integer x is chosen uniformly from \mathbb{Z}_{135} , what is the probability that x belongs to \mathbb{Z}_{135}^* ? Express your answer in **numerical form**.
- (d) (2 points) What is the multiplicative inverse of 13 in \mathbb{Z}_{135}^* ?
- (e) (2 points) Give an example of group G and a subset S of G such that the following conditions are **both** satisfied:
 - S is closed under the group operation.
 - S is not a subgroup of G.
- 4. (5 points) State and prove Lagrange's theorem.
- 5. (5 points) Prove that $n = \sum_{d:d|n} \phi(d)$ where n is an integer greater than one and ϕ is the Euler function. Clearly state any theorems which you use.
- 6. (5 points) Compute $46^{51} \mod 55$. Explain the reasoning behind the steps you use.
- 7. (5 points) Suppose the GenRSA algorithm is used to generate two encryption-decryption exponent pairs (e_1, d_1) and (e_2, d_2) for the same modulus N, where we have $gcd(e_1, e_2) = 1$. Also, suppose the same message $m \in \mathbb{Z}_N^*$ is encrypted via plain RSA using both the exponents to get ciphertexts c_1, c_2 given by

$$c_1 = m^{e_1} \mod N,$$

$$c_2 = m^{e_2} \mod N.$$

Show how a PPT adversary can recover m from c_1, c_2 .

8. (a) (3 points) An element x ∈ Z_N^{*} which satisfies x^{N-1} ≠ 1 mod N is said to be a witness that N is composite.
For a given N, suppose there exists a witness that N is composite. Prove that

at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite.

- (b) (2 points) For an odd integer N, let $N 1 = 2^r u$ where u is odd and $r \ge 1$. An integer $x \in \mathbb{Z}_N^*$ is said to be a *strong witness* that N is composite if
 - (i) $x^u \neq \pm 1 \mod N$ and
 - (ii) $x^{2^{i}u} \neq -1 \mod N$ for all $i \in \{1, 2, \dots, r-1\}$.

If $x \in \mathbb{Z}_N^*$ is a witness, prove that it is also a strong witness.