Midsem Exam : 25 points

- 1. (5 points) Prove that if $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$.
- 2. (5 points) If a private-key encryption scheme Π is perfectly indistinguishable, prove that it is perfectly secret.
- 3. Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a keyed pseudorandom permutation (the first argument is the key). Consider the keyed function $F' : \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^{2n}$ defined for all $x, x' \in \{0,1\}^n$ by

$$F'_k(x||x') = F_k(x)||F_k(x \oplus x').$$

- (a) (1 point) Prove that F'_k is a permutation for all $k \in \{0, 1\}^n$.
- (b) (4 points) Prove that F'_k is **not** a pseudorandom permutation.
- 4. (5 points) Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom permutation. Suppose messages of size dn bits have to be encrypted where d > 1. The message m is divided into d blocks of n bits each where m_i is the ith block. Consider the mode of operation in which a uniform value $\mathsf{ctr} \in \{0,1\}^n$ is chosen, and the ith ciphertext block c_i is computed as $c_i \coloneqq F_k(\mathsf{ctr} + i + m_i)$. The value ctr is sent in the clear, i.e. the eavesdropper observes $\mathsf{ctr}, c_1, c_2, c_3, \ldots, c_d$. The sum $\mathsf{ctr} + i + m_i$ is calculated modulo 2^n ensuring that the argument of F_k belongs to $\{0,1\}^n$. Show that this scheme does **not** have indistinguishable encryptions in the presence of an eavesdropper.
- 5. (5 points) Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function. Show that the following MAC for messages of length 2n is **insecure**: **Gen** outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1 ||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $t = F_k(m_1) ||F_k(F_k(m_2))$.