EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 4 — January 17, 2018

Instructor: Saravanan Vijayakumaran Sa

Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Proof that the one-time pad is perfectly secret
- Limitations of the one-time pad and perfectly secret schemes
- Exercises on perfect secrecy
- Perfect adversarial indistinguishability

2 Recap

- Perfectly secret encryption schemes
- One-time pad construction

3 One-Time Pad

- Recall construction
- Proof of perfect secrecy
- Drawbacks
 - Key needs to be as long as the message
 - Only secure if the key is used only once. While we have not defined a notion of security when multiple messages are encrypted, consider the case when two message m and m' are one-time pad encrypted using the same key k. Then $c \oplus c' = m \oplus k \oplus m' \oplus k = m \oplus m'$. This leaks information about the plaintexts.
- The key length drawback of the one-time pad is actually a drawback of any perfectly secret encryption scheme.

Theorem (Page 35 of KL). If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof. Obtain a contradiction to perfect secrecy when $|\mathcal{K}| < \mathcal{M}$. Assume a uniform distribution on \mathcal{M} .

4 Some Exercises on Perfect Secrecy

- Prove that if only a single character is encrypted, then the shift cipher is perfectly secret. Show that it is not perfectly secret when used to encrypt more than one character.
- What is the largest message space \mathcal{M} for which the mono-alphabetic substitution cipher provides perfect secrecy?
- Prove that the Vigenére cipher using a key period t is perfectly secret when used to encrypt messages of length t. Show that it is not perfectly secret when used to encrypt messages of length more than t.

5 Perfect adversarial indistinguishability

- Another equivalent definition of perfect secrecy.
- Based on an *experiment* involving an adversary passively observing a ciphertext and then trying to guess which of two possible messages was encrypted.
- Will serve as a starting point for defining computational security in the next few lectures.
- Consider the following experiment $PrivK_{A,\Pi}^{eav}$:
 - Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme with message space \mathcal{M} .
 - Let \mathcal{A} be an adversary (an algorithm).
 - The adversary \mathcal{A} outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{A}$.
 - A key k is generated using Gen, and a uniform bit $b \in \{0,1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to \mathcal{A} . This ciphertext c is called the *challenge* ciphertext.
 - \mathcal{A} outputs a bit b'.
 - The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\text{PrivK}_{\mathcal{A},\Pi}^{\text{eav}} = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.
- It is trivial for \mathcal{A} to succeed with probability $\frac{1}{2}$ by outputting a random guess. Perfect indistinguishability requires that it is impossible for \mathcal{A} to do any better.

Definition. Encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$\Pr\left[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}}=1\right]=\frac{1}{2}.$$

Exercises

- Is the shift cipher perfectly indistinguishable? What if only a single character is encrypted?
- Is the Vigenére cipher with key length t perfectly indistinguishable when used to encrypt messages of length t?

Lemma. Encryption scheme $\Pi = (Gen, Enc, Dec)$ is perfectly secret if and only if it is perfectly indistinguishable.

6 References and Additional Reading

• Sections 2.1,2.2,2.3 from Katz/Lindell