EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 7 — January 31, 2018

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Define pseudorandom generators
- Construct a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.
- Prove the security of the above scheme assuming the existence of a pseudorandom generator.

2 Recap

Definition. A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm takes 1^n as input and gives key k, i.e. $k \leftarrow \text{Gen}(1^n)$.
- 2. For $m \in \{0,1\}^*$, $c \leftarrow Enc_k(m)$.
- 3. For ciphertext c, $Dec_k(c) = m$ or error indicator \perp .

It is required that for every n, c, k, we have $Dec_k(Enc_k(m)) = m$.

2.1 Indistinguishability in the presence of an eavesdropper

Consider the following experiment $\mathtt{PrivK}_{\mathcal{A},\Pi}^{\mathtt{eav}}(n)$:

- 1. The adversary \mathcal{A} is given 1^n and outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
- 2. A key k is generated using Gen, and a uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to \mathcal{A} . This ciphertext c is called the *challenge ciphertext*.
- 3. \mathcal{A} outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\text{PrivK}_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.

Definition. A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic polynomial-time adversaries A there is a negligible function negl such that, for all n,

$$\Pr\left[\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \textit{negl}(n).$$

3 Pseudorandom Generators

- It is not known how to construct computationally secure encryption schemes without making any assumptions. We need to assume the existence of pseudorandom generators.
- A pseudorandom generator is an efficient (polynomial-time), deterministic algorithm for transforming a short, uniform bitstring called the *seed* into a longer, "uniform-looking" or "pseudorandom" output string.
- Pseudorandomness is a property of a *distribution* on strings.
- Some desirable properties of a pseudorandom generator:
 - Any bit of the output should be equal to 1 with probability close to $\frac{1}{2}$.
 - The parity of any subset of the output bits should be equal to 1 with probability close to $\frac{1}{2}$.
- A good pseudorandom generator should pass all efficient statistical tests, i.e. for any efficient statistical test or *distinguisher* D, the probability that D returns 1 given the output of the pseudorandom generator should be close to the probability that D returns 1 when given a uniform string of the same length.

Definition. Let l be a polynomial and let G be a deterministic polynomial-time algorithm such that for any n and $s \in \{0,1\}^n$, the result G(s) is a string of length l(n). We say that G is a **pseudorandom generator** if the following conditions hold:

- 1. **Expansion:** For every n it holds that l(n) > n.
- 2. **Pseudorandomness:** For any PPT algorithm D, there is a negligible function negl such that

$$\left|\Pr\left[D\left(G(s)\right)=1\right]-\Pr\left[D(r)=1\right]\right| \le \operatorname{negl}(n),$$

where the first probability is taken over uniform choice of $s \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $r \in \{0,1\}^{l(n)}$ and the randomness of D.

We call l the expansion factor of G.

- Example of a non-pseudorandom generator: Define $G : \{0,1\}^n \to \{0,1\}^{n+1}$ as $G(s) = s \parallel (\bigoplus_{i=1}^n s_i).$
- What happens if remove the restriction that *D* is polynomial time?
- There is no known way to prove the unconditional existence of pseudorandom generators. We will some constructions of stream ciphers which we hope are pseudorandom generators.

4 A Secure Fixed-Length Encryption Scheme

- Let G be a pseudorandom generator with expansion factor l. Define a private-key encryption scheme for messages of length l as follows:
 - Gen: On input 1^n , choose k uniformly from $\{0,1\}^n$.
 - Enc: Given $k \in \{0,1\}^n$ and message $m \in \{0,1\}^{l(n)}$, output the ciphertext

$$c := G(k) \oplus m.$$

- Dec: Given $k \in \{0,1\}^n$ and ciphertext $c \in \{0,1\}^{l(n)}$, output the message

$$m := G(k) \oplus c.$$

Theorem. If G is a pseudorandom generator, then the above construction is a fixed-length encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, i.e. for any PPT adversary \mathcal{A} there is a negligible function **negl** such that

$$\Pr\left[\textit{PrivK}_{\mathcal{A},\Pi}^{\textit{eav}}(n) = 1\right] \leq \frac{1}{2} + \textit{negl}(n)$$

Proof. Note that if a one-time pad is used instead of the pseudorandom generator G(k), the system is EAV-secure. The key idea is that if a PPT adversary \mathcal{A} can distinguish between the encryptions of m_0 and m_1 , then it can distinguish between G(k) and a uniformly random bitstring.

Distinguisher D: D is given a string $w \in \{0,1\}^{l(n)}$ (assume n can be determined from l(n))

- 1. Run $\mathcal{A}(1^n)$ to obtain a pair of messages $m_0, m_1 \in \{0, 1\}^{l(n)}$.
- 2. Choose a uniform bit $b \in \{0, 1\}$. Set $c := w \oplus m_b$.
- 3. Give c to A and get b'. If b = b' output 1 and output 0 otherwise.

If \mathcal{A} succeeds, D decides that w is a pseudorandom string and if \mathcal{A} fails D decides w is a random string.

Rest of proof done in class.

5 References and Additional Reading

• Sections 3.2,3.3 from Katz/Lindell