EE 720: An Introduction to Number Theory and Cryptography (Spring 2018)

Lecture 9 — February 7, 2018

Instructor: Saravanan Vijayakumaran

Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Recap the definition of CPA-security
- Define pseudorandom functions
- Give construction of CPA-secure encryption scheme

2 Recap

Chosen-Plaintext Attacks and CPA-Security

- Consider the following experiment $\operatorname{PrivK}_{A\Pi}^{\operatorname{cpa}}(n)$:
 - 1. A key k is generated by running $Gen(1^n)$.
 - 2. The adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$, and outputs a pair of messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
 - 3. A uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
 - 4. The adversary \mathcal{A} continues to have oracle access to $\operatorname{Enc}_k(\cdot)$, and outputs a bit b'.
 - 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. If output is 1, we say that \mathcal{A} succeeds.

Definition. A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a plaintext attack, or is **CPA-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n,

$$\Pr\left[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \textit{negl}(n).$$

• Note that no deterministic encryption scheme can be CPA-secure.

3 Pseudorandom Functions

- Pseudorandom functions are "random-looking" functions.
- In this case, pseudorandomness will be a property of a distribution over functions.

- Given a security parameter n, a keyed function $F : \{0,1\}^{l_{key}(n)} \times \{0,1\}^{l_{in}(n)} \to \{0,1\}^{l_{out}(n)}$ is a two-input function, where the first input is called the key and is denoted by k. The functions l_{key}, l_{in}, l_{out} specify the lengths of the key, second input, and output respectively.
- We will only consider *efficient* keyed functions, i.e. there is a polynomial-time algorithm that computes F(k, x) given k and x.
- If the key k is fixed, we get a single-input function $F_k : \{0,1\}^{l_{in}(n)} \to \{0,1\}^{l_{out}(n)}$ defined by $F_k(x) = F(k,x)$.
- F is said to be *length-preserving* when $l_{key}(n) = l_{in}(n) = l_{out}(n) = n$.
- For simplicity, let us assume that F is length-preserving.
- Let Func_n be the set of all functions with domain and range equal to $\{0,1\}^n$.
- Informally, a keyed function F is said to be *pseudorandom* if the function F_k (for a uniform key k) is indistinguishable from a function chosen uniformly from Func_n . No efficient adversary should be able to distinguish (with a success probability non-negligibly better than $\frac{1}{2}$) whether it is interacting with F_k (for uniform k) or f (where f is uniformly chosen from Func_n).
- Note that $|\text{Func}_n| = 2^{n \cdot 2^n}$. Visualize a lookup table having 2^n rows with each row containing an *n*-bit string. Each row corresponds to an input $x \in \{0,1\}^n$ and the contents correspond to the output f(x).
- Choosing a function f uniformly from $Func_n$ corresponds to choosing each row in the lookup table uniformly and independently of the other rows.
- For a given length-preserving keyed function F_k , choosing k uniformly from $\{0,1\}^n$ induces a distribution over at most 2^n functions with domain and range equal $\{0,1\}^n$.
- The definition of a pseudorandom function will be given with respect to an efficient (polynomialtime) distinguisher D which is given access to an *oracle* \mathcal{O} which is either equal to F_k (for uniform k) or f (for uniform f from Func_n). D can query the oracle \mathcal{O} at any point $x \in \{0, 1\}^n$ and the oracle returns $\mathcal{O}(x)$. D can adaptively query the oracle but can ask only polynomially many queries.

Definition. Let F be an efficient, length-preserving, keyed function. F is a **pseudorandom** function if for all PPT distinguishers D, there is a negligible function negl such that:

$$\left|\Pr\left[D^{F_k(\cdot)}(1^n)=1\right]-\Pr\left[D^{f(\cdot)}(1^n)=1\right]\right| \leq \operatorname{\textit{negl}}(n),$$

where the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in Func_n$ and the randomness of D.

- D is not given access to the key k. If k is known, it is easy to construct a distinguisher which succeeds with non-negligible probability (how?).
- Example of a non-pseudorandom, length-preserving, keyed function: $F(k, x) = k \oplus x$.

4 CPA-Secure Encryption from Pseudorandom Functions

- Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:
 - Gen: On input 1^n , choose k uniformly from $\{0, 1\}^n$.
 - Enc: Given $k \in \{0,1\}^n$ and message $m \in \{0,1\}^n$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext

$$c := \langle r, F_k(r) \oplus m \rangle.$$

- Dec: Given $k \in \{0,1\}^n$ and ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s.$$

Theorem. If F is a pseudorandom function, then the above construction is a CPA-secure privatekey encryption scheme for messages of length n.

Proof. Done in class.

• What's a drawback of this construction?

5 References and Additional Reading

• Section 3.4, 3.5 from Katz/Lindell