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1 Lecture Plan

• Exercises to see utility of the perfect adversarial indistinguishability definition.

• Motivate computational security

• Define computationally secure encryption

• Define pseudorandom generators

2 Exercises on perfect adversarial indistinguishability

• We know that the shift cipher is perfectly secret only if the message consists of a single
character. Suppose we encrypt a two-character message using the shift cipher. Construct an
adversary in the perfect indistinguishability experiment whose probability of success is better
than 1

2 .

• We said that the one-time pad is secure only if the key is used exactly once. Consider the
case when an n-bit uniformly chosen key is used to encrypt two n-bit messages m1 and m2

using the one-time pad, i.e. c1 = m1 ⊕ k, c2 = m2 ⊕ k. Construct an adversary in the perfect
indistinguishability experiment whose probability of success is better than 1

2 .

3 Computational Security

• To avoid the limitations of perfect secrecy, the weaker notion of computational secrecy is used
in modern cryptography.

• Concrete guarantees of security are difficult to provide

• In the asymptotic approach, the cryptographic schemes as well as the involved parties are
parametrized by an integer-valued security parameter n (typically the key length)

• Computational security allows two relaxations

– Security is only guaranteed against adversaries with randomized attack algorithms with
running time which is polynomial in n.

– The adversary is allowed to succeed with negligible probability, i.e. the success proba-
bility is asymptotically smaller than any inverse polynomial in n.
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Definition (Page 48 of KL). A function f from the natural numbers to the non-negative real
numbers is negligible if for every positive polynomial p there is an N such that for all integers
n > N it holds that f(n) < 1

p(n) .

Examples: 2−n, 2−
√
n, n− logn

• Negligible success probabilities obey certain closure properties.

Proposition (Page 49 of KL). Let negl1 and negl2 be negligible functions. Then,

1. The function negl3 defined by negl3(n) = negl1(n) + negl2(n) is negligible.

2. For any positive polynomial p, the function negl4 defined by negl4(n) = p(n) · negl1(n) is
negligible.

• The second part of the proposition implies that if a certain event occurs with only negligible
probability in a certain experiment, then the event occurs with negligible probability even if
the experiment is repeated polynomially many times.

• General framework of any computational security definition: A scheme is secure if for every
probabilistic polynomial-time adversary A carrying out an attack of a formally specified
type, the probability that A succeeds in the attack (where success is also formally specified)
is negligible.

• Necessity of the relaxations

– Exclude brute-force attackers

– Exclude pure-guess attackers who succeed with exponentially small probability

3.1 Defining Computationally Secure Encryption

• We need to introduce the security parameter n in our syntax of private-key encryption.

• We assume M = {0, 1}∗.

• We allow the decryption algorithm to output an error in case it is presented with an invalid
ciphertext.

Definition. A private-key encryption scheme is a tuple of probabilistic polynomial-time algo-
rithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm takes 1n as input and gives key k, i.e. k ← Gen(1n).

2. For m ∈ {0, 1}∗, c← Enck(m).

3. For ciphertext c, Deck(c) = m or error indicator ⊥.

It is required that for every n, c, k, we have Deck (Enck (m)) = m.
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3.2 Indistinguishability in the presence of an eavesdropper

• We consider the ciphertext-only attack where the adversary observes a single ciphertext.

• Our definition will resemble the perfect adversarial indistinguishability definition except for
two differences:

– The experiment is parametrized by n

– We require the adversary to output equal length messages m0,m1. (See exercise 3.2 of
KL)

• Consider the following experiment PrivKeavA,Π(n):

1. The adversary A is given 1n and outputs a pair of arbitrary messages m0,m1 ∈M with
|m0| = |m1|.

2. A key k is generated using Gen, and a uniform bit b ∈ {0, 1} is chosen. Ciphertext
c ← Enck(mb) is computed and given to A. This ciphertext c is called the challenge
ciphertext.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. We write
PrivKeavA,Π(n) = 1 if the output of the experiment is 1 and in this case we say that A
succeeds.

Definition. A private-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable en-
cryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic
polynomial-time adversaries A there is a negligible function negl such that, for all n,

Pr
[
PrivKeavA,Π(n) = 1

]
≤ 1

2
+ negl(n).

4 Pseudorandom Generators

• It is not known how to construct computationally secure encryption schemes without making
any assumptions. We need to assume the existence of pseudorandom generators.

• A pseudorandom generator is an efficient (polynomial-time), deterministic algorithm for trans-
forming a short, uniform bitstring called the seed into a longer, “uniform-looking” or “pseu-
dorandom” output string.

• Pseudorandomness is a property of a distribution on strings.

• Some desirable properties of a pseudorandom generator:

– Any bit of the output should be equal to 1 with probability close to 1
2 .

– The parity of any subset of the output bits should be equal to 1 with probability close
to 1

2 .
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• A good pseudorandom generator should pass all efficient statistical tests, i.e. for any efficient
statistical test or distinguisher D, the probability that D returns 1 given the output of the
pseudorandom generator should be close to the probability that D returns 1 when given a
uniform string of the same length.

Definition. Let l be a polynomial and let G be a deterministic polynomial-time algorithm such
that for any n and s ∈ {0, 1}n, the result G(s) is a string of length l(n). We say that G is a
pseudorandom generator if the following conditions hold:

1. Expansion: For every n it holds that l(n) > n.

2. Pseudorandomness: For any PPT algorithm D, there is a negligible function negl such
that

|Pr [D (G(s)) = 1]− Pr [D(r) = 1]| ≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and the randomness of
D, and the second probability is taken over uniform choice of r ∈ {0, 1}l(n) and the randomness
of D.

We call l the expansion factor of G.

• Example of a non-pseudorandom generator : Define G : {0, 1}n → {0, 1}n+1 as G(s) =
s‖ (⊕n

i=1si).

• What happens if remove the restriction that D is polynomial time?

• There is no known way to prove the unconditional existence of pseudorandom generators. We
will some constructions of stream ciphers which we hope are pseudorandom generators.

5 References and Additional Reading

• Sections 2.3,3.1,3.2,3.3 from Katz/Lindell
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