EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 5 — January 17, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran
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Lecture Plan

Exercises to see utility of the perfect adversarial indistinguishability definition.
Motivate computational security
Define computationally secure encryption

Define pseudorandom generators

Exercises on perfect adversarial indistinguishability

We know that the shift cipher is perfectly secret only if the message consists of a single
character. Suppose we encrypt a two-character message using the shift cipher. Construct an
adversary in the perfect indistinguishability experiment whose probability of success is better
than 3.
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We said that the one-time pad is secure only if the key is used exactly once. Consider the

case when an n-bit uniformly chosen key is used to encrypt two n-bit messages m, and mao

using the one-time pad, i.e. ¢; = my ® k,co = mo @ k. Construct an adversary in the perfect
1

indistinguishability experiment whose probability of success is better than 3.

Computational Security

To avoid the limitations of perfect secrecy, the weaker notion of computational secrecy is used
in modern cryptography.

Concrete guarantees of security are difficult to provide

In the asymptotic approach, the cryptographic schemes as well as the involved parties are
parametrized by an integer-valued security parameter n (typically the key length)

Computational security allows two relaxations

— Security is only guaranteed against adversaries with randomized attack algorithms with
running time which is polynomial in n.

— The adversary is allowed to succeed with negligible probability, i.e. the success proba-
bility is asymptotically smaller than any inverse polynomial in n.



Definition (Page 48 of KL). A function f from the natural numbers to the non-negative real
numbers is negligible if for every positive polynomial p there is an N such that for all integers
n > N it holds that f(n) < —~

p(n)°

Examples: 277,27V p~logn

e Negligible success probabilities obey certain closure properties.

Proposition (Page 49 of KL). Let negl; and negl, be negligible functions. Then,

3.1

. The function negls defined by negls(n) = negly(n) + negly(n) is negligible.

For any positive polynomial p, the function negl, defined by negl,(n) = p(n) - negly(n) is
negligible.

The second part of the proposition implies that if a certain event occurs with only negligible
probability in a certain experiment, then the event occurs with negligible probability even if
the experiment is repeated polynomially many times.

General framework of any computational security definition: A scheme is secure if for every
probabilistic polynomial-time adversary A carrying out an attack of a formally specified
type, the probability that A succeeds in the attack (where success is also formally specified)
is negligible.

Necessity of the relaxations

— Exclude brute-force attackers

— Exclude pure-guess attackers who succeed with exponentially small probability

Defining Computationally Secure Encryption
We need to introduce the security parameter n in our syntax of private-key encryption.
We assume M = {0, 1}*.

We allow the decryption algorithm to output an error in case it is presented with an invalid
ciphertext.

Definition. A private-key encryption scheme is a tuple of probabilistic polynomial-time algo-
rithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm takes 1™ as input and gives key k, i.e. k < Gen(1™).

2. For m € {0,1}", ¢ < Encg(m).

3. For ciphertezt ¢, Decy(c) = m or error indicator L.

It is required that for every n,c, k, we have Decy (Ency (m)) = m.



3.2 Indistinguishability in the presence of an eavesdropper

e We consider the ciphertext-only attack where the adversary observes a single ciphertext.

e Our definition will resemble the perfect adversarial indistinguishability definition except for
two differences:

— The experiment is parametrized by n

— We require the adversary to output equal length messages mg, m1. (See exercise 3.2 of

KL)

eav

e Consider the following experiment PrivK%y(n):

1.

The adversary A is given 1™ and outputs a pair of arbitrary messages mg, m; € M with
[mo| = [ma].

. A key k is generated using Gen, and a uniform bit b € {0,1} is chosen. Ciphertext

¢ < Encg(my) is computed and given to A. This ciphertext ¢ is called the challenge
ciphertext.

3. A outputs a bit ¥'.

4. The output of the experiment is defined to be 1 if ¥ = b, and 0 otherwise. We write

eav

PrivKAH(n) = 1 if the output of the experiment is 1 and in this case we say that A
succeeds.

Definition. A private-key encryption scheme II = (Gen,Enc,Dec) has indistinguishable en-
cryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic
polynomial-time adversaries A there is a negligible function negl such that, for all n,

Pr [PrivkS{}(n) = 1] < - + negl(n).

N | —

4 Pseudorandom Generators

e It is not known how to construct computationally secure encryption schemes without making
any assumptions. We need to assume the existence of pseudorandom generators.

e A pseudorandom generator is an efficient (polynomial-time), deterministic algorithm for trans-
forming a short, uniform bitstring called the seed into a longer, “uniform-looking” or “pseu-
dorandom” output string.

e Pseudorandomness is a property of a distribution on strings.

e Some desirable properties of a pseudorandom generator:

— Any bit of the output should be equal to 1 with probability close to %

— The parity of any subset of the output bits should be equal to 1 with probability close

1
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e A good pseudorandom generator should pass all efficient statistical tests, i.e. for any efficient
statistical test or distinguisher D, the probability that D returns 1 given the output of the
pseudorandom generator should be close to the probability that D returns 1 when given a
uniform string of the same length.

Definition. Let | be a polynomial and let G be a deterministic polynomial-time algorithm such
that for any n and s € {0,1}", the result G(s) is a string of length l(n). We say that G is a
pseudorandom generator if the following conditions hold:

1. Ezxpansion: For every n it holds that [(n) > n.

2. Pseudorandommness: For any PPT algorithm D, there is a negligible function negl such
that

[Pr[D(G(s)) = 1] = Pr[D(r) = 1]| < negi(n),

where the first probability is taken over uniform choice of s € {0,1}" and the randomness of

D, and the second probability is taken over uniform choice of r € {0, 1}1(") and the randomness
of D.

We call l the expansion factor of G.

e Example of a non-pseudorandom generator: Define G : {0,1}"* — {0,1}"" as G(s) =
sl (@izasi)-

e What happens if remove the restriction that D is polynomial time?

e There is no known way to prove the unconditional existence of pseudorandom generators. We
will some constructions of stream ciphers which we hope are pseudorandom generators.

5 References and Additional Reading

e Sections 2.3,3.1,3.2,3.3 from Katz/Lindell
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