EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Lecture 18 — March 18, 2019

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

e Chinese Remainder Theorem

e RSA Encryption

2 Chinese Remainder Theorem

e Chinese Remainder Theorem: Let N = pg where p, g are integers greater than 1 which
are relatively prime, i.e. gcd(p, q) = 1. Then

LN =~ ZLp X Ly and Ly =~ 7, X L.

Moreover, the function f : Zy +— Zj, X Z4 defined by
f(x) = (z mod p, z mod q)

is an isomorphism from Zy to Zj, X Z, and the restriction of f to Z}; is an isomorphism from
Ly to Zy X ZLy.

e Example: Zj; ={1,2,4,7,8,11,13,14}. This group is isomorphic to Zj3 x Z}.

e An extension of the Chinese remainder theorem says that if p1,ps .. ., p; are pairwise relatively
prime (i.e., ged(p;,p;) = 1 for all i # j) and N = II._, p;, then

~ DY *N * * DY *
LN =~ Ly, X Lpy X X L, and Ly > Ly, X L, % X L, -

e Usage

— Compute 11°3 mod 15
— Compute 29'% mod 35
— Compute 18%° mod 35

e How to go from (zp,x,) = (x mod p,z mod ¢) to z mod N where ged(p,q) = 17

— Compute X,Y such that Xp+Yq=1.
— Set 1, := Ygmod N and 1, := Xp mod .

— Compute z =z, - 1, + x4 - 1, mod N.

e Example: p=>5,¢ =7 and N = 35. What does (4, 3) correspond to?



o Let p1,po,...,p; be pairwise relatively prime positive integers. Then the unique solution
modulo M = pips - - - p; of the system of congruences
= a1 mod p;

T = ao mod po

x = a; mod p;
is given by
r = a1 Myyr + agMoys + - - - + a; My,
where M; = % and M;y; = 1 mod p;.

e Example: Solve for x modulo 105 which satisfied the following congruences.

z =1 mod 3
T =2mod 5
z=3mod?7

3 RSA Encryption

e Given a composite integer N, the factoring problem is to find integers p,q > 1 such that
pg=N.

e One can find factors of N by trial division, i.e. exhaustively checking if p divides N for p =
2,3,...,|V/N|. But trial division has running time O <\/ﬁ . polylog(N)) =0 (2IV172. || N9
which is exponential in the input length || N||.

3.1 The Factoring Assumption
e Let GenModulus be a polynomial-time algorithm that, on input 1", outputs (N, p, q) where
N = pq, and p and ¢ are n-bit primes except with probability negligible in n.
e The factoring experiment Factor 4 genModulus(7):
1. Run GenModulus(1™) to obtain (V,p,q).

2. Ais given N, and outputs p’, ¢’ > 1.
3. The output of the experiment is 1 if N = p’¢/, and 0 otherwise.
e We use p/, ¢’ in the above experiment because it is possible that GenModulus returns composite

integers p, q albeit with negligible probability. In this case, we could find factors of N other
than p and q.

e Definition: Factoring is hard relative to GenModulus if for all PPT algorithms A there
exists a negligible function negl such that Pr[Factor 4 genModauius(”) = 1] < negl(n).

e The factoring assumption states that there exists a GenModulus relative to which factoring
is hard.



3.2 Plain RSA
e Let GenRSA be a PPT algorithm that on input 1", outputs a modulus IV that is the product
of two n-bit primes, along with integers e, d > 1 satisfying ed = 1 mod ¢(IV).

e If we chose e > 1 such that ged(e, ¢(IN)) = 1, then the multiplicative inverse d of e in Z}; will
satisfy the required conditions.

e Define a public-key encryption scheme as follows:

— Gen: On input 1™ run GenRSA(1™) to obtain N, e, and d. The public key is (IV,e) and
the private key is (IV, d).

— Enc: On input a public key pk = (N, e) and message m € Z};, compute the ciphertext
c=m®mod N.

— Dec: On input a private key sk = (N, d) and ciphertext ¢ € Z%;, output 7 = ¢* mod N.

e Example: Suppose GenRSA outputs (N, e, d) = (391, 3,235). Note that 391 = 17 x 23 and
$(391) = 16 x 22 = 352. Also 3 x 235 = 1 mod 352.

The message m = 158 € Z3y; is encrypted using public key (391,3) as ¢ = 1582 mod 391 =
295.

Decryption of m is done as 295%3% mod 391 = 158.
4 References and Additional Reading

e Section 8.1.5 from Katz/Lindell

e Sections 8.2.3, 11.5.1 from Katz/Lindell
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