EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)

Lecture 4 — January 23, 2020

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Perfect adversarial indistinguishability

2 Recap

• Perfectly secret encryption schemes

3 Some Exercises on Perfect Secrecy

- Prove that if only a single character is encrypted, then the shift cipher is perfectly secret. Show that it is not perfectly secret when used to encrypt more than one character.
- What is the largest message space \mathcal{M} for which the substitution cipher provides perfect secrecy?
- Prove that the Vigenére cipher using a key period t is perfectly secret when used to encrypt messages of length t. Show that it is not perfectly secret when used to encrypt messages of length more than t.

4 Perfect adversarial indistinguishability

- Another equivalent definition of perfect secrecy.
- Based on an *experiment* involving an adversary passively observing a ciphertext and then trying to guess which of two possible messages was encrypted.
- Will serve as a starting point for defining computational security in the next few lectures.
- Consider the following experiment PrivK^{eav}_{A.II}:
 - Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme with message space \mathcal{M} .
 - Let \mathcal{A} be an adversary (an algorithm).
 - The adversary \mathcal{A} outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{A}$.
 - A key k is generated using Gen, and a uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to \mathcal{A} . This ciphertext c is called the *challenge* ciphertext.

- $-\mathcal{A}$ outputs a bit b'.
- The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\text{PrivK}_{\mathcal{A},\Pi}^{\text{eav}} = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.
- It is trivial for \mathcal{A} to succeed with probability $\frac{1}{2}$ by outputting a random guess or a fixed bit. Perfect indistinguishability requires that it is impossible for \mathcal{A} to do any better.

Definition. Encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{eav}}=1\right]=\frac{1}{2}.$$

Lemma. Encryption scheme $\Pi = (Gen, Enc, Dec)$ is perfectly secret if and only if it is perfectly indistinguishable.

Proof.

- (Forward direction, $A \implies B$) Assume that Π is perfectly secret and that the adversary is deterministic. Prove that Π is perfectly indistinguishable. Prove it assuming the adversary is probabilistic.
- (**Reverse direction**, $B \implies A$) Proving $B \implies A$ is equivalent to proving $A^c \implies B^c$. Assume that Π is not perfectly secret. Prove that Π is not perfectly indistinguishable.

5 References and Additional Reading

• Section 2.3 from Katz/Lindell