
EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)

Lecture 6 — January 30, 2020

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

• Define pseudorandom generators.

• See example of stream ciphers used in practice.

• Construct a fixed-length private-key encryption scheme that has indistinguishable encryptions
in the presence of an eavesdropper.

• Prove the security of the above scheme assuming the existence of a pseudorandom generator.

2 Pseudorandom Generators

• Pseudorandomness is a property of a distribution on strings.

• Some desirable properties of a pseudorandom generator:

– Any bit of the output should be equal to 1 with probability close to 1
2 .

– The parity of any subset of the output bits should be equal to 1 with probability close
to 1

2 .

• A good pseudorandom generator should pass all efficient statistical tests, i.e. for any efficient
statistical test or distinguisher D, the probability that D returns 1 given the output of the
pseudorandom generator should be close to the probability that D returns 1 when given a
uniform string of the same length.

Definition. Let l be a polynomial and let G be a deterministic polynomial-time algorithm such
that for any n and s ∈ {0, 1}n, the result G(s) is a string of length l(n). We say that G is a
pseudorandom generator if the following conditions hold:

1. Expansion: For every n it holds that l(n) > n.

2. Pseudorandomness: For any PPT algorithm D, there is a negligible function negl such
that

|Pr [D (G(s)) = 1]− Pr [D(r) = 1]| ≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and the randomness of
D, and the second probability is taken over uniform choice of r ∈ {0, 1}l(n) and the randomness
of D.

We call l the expansion factor of G.
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• Example of a non-pseudorandom generator : Define G : {0, 1}n → {0, 1}n+1 as G(s) =
s‖ (⊕n

i=1si).

• What happens if remove the restriction that D is polynomial time?

• There is no known way to prove the unconditional existence of pseudorandom generators. We
will see some constructions of stream ciphers which we hope are pseudorandom generators.

3 Stream Ciphers

• Stream ciphers are practical systems which behave like pseudorandom generators. However,
there are no proofs available that a particular stream cipher is in fact a pseudorandom gen-
erator.

• Stream ciphers can be designed for either efficient hardware implementation or efficient soft-
ware implementation.

• Hardware-oriented stream ciphers are based on feedback shift registers (FSRs).

• Linear feedback shift registers (LFSRs) are FSRs where the feedback function is linear.

• Example: Consider a four-bit shift register where the feedback is the XOR of all the four bits.
If we initialize the state to 1100, then we get a cycle of period 5. The states are 1100, 1000,
0001, 0011, 0110.

• The output depends on the state of the LFSR. Once a state repeats, the output repeats. If
an LFSR has n bits, then the period of the output sequence can be at most 2n − 1.

• Each LFSR can be associated with a feedback polynomial. If the feedback polynomial is
primitive, then the period is maximal. A polynomial of degree n over GF(2) is primitive
if it is irreducible and the smallest value of m for which the polynomial divides Xm + 1 is
m = 2n − 1. Example: 1 + X3 + X4.

3.1 A5/1

• Used to provide voice encryption in the GSM cellular system.

• Developed in 1987. Reverse engineered in 1999.

• Uses three LFSRs of lengths 19, 22, and 23.

• More details at https://en.wikipedia.org/wiki/A5/1.

4 A Secure Fixed-Length Encryption Scheme

• Let G be a pseudorandom generator with expansion factor l. Define a private-key encryption
scheme for messages of length l as follows:

– Gen: On input 1n, choose k uniformly from {0, 1}n.
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– Enc: Given k ∈ {0, 1}n and message m ∈ {0, 1}l(n), output the ciphertext

c := G(k)⊕m.

– Dec: Given k ∈ {0, 1}n and ciphertext c ∈ {0, 1}l(n), output the message

m := G(k)⊕ c.

Theorem. If G is a pseudorandom generator, then the above construction is a fixed-length encryp-
tion scheme that has indistinguishable encryptions in the presence of an eavesdropper, i.e. for any
PPT adversary A there is a negligible function negl such that

Pr
[
PrivKeavA,Π(n) = 1

]
≤ 1

2
+ negl(n).

Proof. Note that if a one-time pad is used instead of the pseudorandom generator G(k), the system
is EAV-secure. The key idea is that if a PPT adversary A can distinguish between the encryptions
of m0 and m1, then it can distinguish between G(k) and a uniformly random bitstring.

Distinguisher D: D is given a string w ∈ {0, 1}l(n) (assume n can be determined from l(n))

1. Run A(1n) to obtain a pair of messages m0,m1 ∈ {0, 1}l(n).

2. Choose a uniform bit b ∈ {0, 1}. Set c := w ⊕mb.

3. Give c to A and get b′. If b = b′ output 1 and output 0 otherwise.

If A succeeds, D decides that w is a pseudorandom string and if A fails D decides w is a random
string.

Rest of proof done in class.

5 References and Additional Reading

• Sections 3.2, 3.3 from Katz/Lindell
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