EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)

Lecture 6 — January 30, 2020

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

e Define pseudorandom generators.
e See example of stream ciphers used in practice.

e Construct a fixed-length private-key encryption scheme that has indistinguishable encryptions
in the presence of an eavesdropper.

e Prove the security of the above scheme assuming the existence of a pseudorandom generator.

2 Pseudorandom Generators

e Pseudorandomness is a property of a distribution on strings.
e Some desirable properties of a pseudorandom generator:

— Any bit of the output should be equal to 1 with probability close to %

— The parity of any subset of the output bits should be equal to 1 with probability close
to L.
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e A good pseudorandom generator should pass all efficient statistical tests, i.e. for any efficient
statistical test or distinguisher D, the probability that D returns 1 given the output of the
pseudorandom generator should be close to the probability that D returns 1 when given a
uniform string of the same length.

Definition. Let [ be a polynomial and let G be a deterministic polynomial-time algorithm such
that for any n and s € {0,1}", the result G(s) is a string of length l(n). We say that G is a
pseudorandom generator if the following conditions hold:

1. Expansion: For every n it holds that l(n) > n.

2. Pseudorandommness: For any PPT algorithm D, there is a negligible function negl such
that
[Pr[D(G(s)) = 1] = Pr[D(r) = 1]| < negi(n),

where the first probability is taken over uniform choice of s € {0,1}"™ and the randomness of
D, and the second probability is taken over uniform choice of r € {0, 1}1(”) and the randomness
of D.

We call l the expansion factor of G.
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Example of a non-pseudorandom generator: Define G : {0,1}" — {0,1}"T! as G(s) =
sl (®i15:)-

What happens if remove the restriction that D is polynomial time?

There is no known way to prove the unconditional existence of pseudorandom generators. We
will see some constructions of stream ciphers which we hope are pseudorandom generators.

Stream Ciphers

Stream ciphers are practical systems which behave like pseudorandom generators. However,
there are no proofs available that a particular stream cipher is in fact a pseudorandom gen-
erator.

Stream ciphers can be designed for either efficient hardware implementation or efficient soft-
ware implementation.

Hardware-oriented stream ciphers are based on feedback shift registers (FSRs).
Linear feedback shift registers (LFSRs) are FSRs where the feedback function is linear.

Example: Consider a four-bit shift register where the feedback is the XOR of all the four bits.
If we initialize the state to 1100, then we get a cycle of period 5. The states are 1100, 1000,
0001, 0011, 0110.

The output depends on the state of the LFSR. Once a state repeats, the output repeats. If
an LFSR has n bits, then the period of the output sequence can be at most 2™ — 1.

Each LFSR can be associated with a feedback polynomial. If the feedback polynomial is
primitive, then the period is maximal. A polynomial of degree n over GF(2) is primitive
if it is irreducible and the smallest value of m for which the polynomial divides X" + 1 is
m = 2" — 1. Example: 1+ X3+ X%

A5/1
Used to provide voice encryption in the GSM cellular system.
Developed in 1987. Reverse engineered in 1999.

Uses three LFSRs of lengths 19, 22, and 23.

More details at https://en.wikipedia.org/wiki/A5/1l

A Secure Fixed-Length Encryption Scheme

Let G be a pseudorandom generator with expansion factor [. Define a private-key encryption
scheme for messages of length [ as follows:

— Gen: On input 1", choose k uniformly from {0, 1}".


https://en.wikipedia.org/wiki/A5/1

— Enc: Given k € {0,1}" and message m € {0,1}'("), output the ciphertext
c:=G(k) &m.

— Dec: Given k € {0,1}" and ciphertext ¢ € {0, 1} output the message
m:= G(k) ® c.

Theorem. If G is a pseudorandom generator, then the above construction is a fized-length encryp-
tion scheme that has indistinguishable encryptions in the presence of an eavesdropper, i.e. for any
PPT adversary A there is a negligible function negl such that

Pr [PrivkS{f(n) = 1] < - + negl(n).
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Proof. Note that if a one-time pad is used instead of the pseudorandom generator G(k), the system
is EAV-secure. The key idea is that if a PPT adversary A can distinguish between the encryptions
of mp and my, then it can distinguish between G(k) and a uniformly random bitstring.

Distinguisher D: D is given a string w € {0,1}!(®) (assume n can be determined from I(n))

1. Run A(1") to obtain a pair of messages mg,m; € {0, 1},
2. Choose a uniform bit b € {0,1}. Set ¢ := w @ my,.

3. Give c to A and get V/. If b =V’ output 1 and output 0 otherwise.

If A succeeds, D decides that w is a pseudorandom string and if A fails D decides w is a random
string.

Rest of proof done in class. O

5 References and Additional Reading

e Sections 3.2, 3.3 from Katz/Lindell
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