Assignment 2: 20 points

- 1. [5 points] For a negligible function negl, prove that p(n) negl(n) is also negligible for any positive polynomial p.
- 2. [5 points] Let $G : \{0,1\}^n \to \{0,1\}^{l(n)}$ be a pseudorandom generator with expansion factor l(n) > n. Prove or disprove that the following functions are pseudorandom generators where $s \in \{0,1\}^n$ and s_i is the *i*th bit of *s*. The \parallel denotes the string concatenation operator.

(a)
$$G_1(s) = G(s) || 0.$$

(b)
$$G_2(s) = G(s_1, s_2, \dots, s_{|s|-1}) ||s_{|s|}.$$

- (c) $G_3(s) = G(s||0).$
- 3. [10 points] A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is **EAV-secure**, if for all PPT adversaries \mathcal{A} there is a negligible function negl such that, for all n,

$$\Pr\left[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] \le \frac{1}{2} + \mathsf{negl}(n).$$

Let $\operatorname{out}_{\mathcal{A}}(\operatorname{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,b))$ denote the output b' of \mathcal{A} when m_b is encrypted. Suppose that a private-key encryption scheme $\Pi = (\operatorname{Gen}, \operatorname{Enc}, \operatorname{Dec})$ is EAV-secure.

Prove that for all PPT adversaries \mathcal{A} there is a negligible function **negl** such that, for all n,

$$\left|\Pr\left[\mathsf{out}_{\mathcal{A}}\left(\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n,0)\right)=1\right]-\Pr\left[\mathsf{out}_{\mathcal{A}}\left(\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n,1)\right)=1\right]\right|\leq\mathsf{negl}(n).$$