EE 720: Introduction to Number Theory and Cryptography (Autumn 2023)
Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay
Assignment 3: 20 points
Date: October 6, 2023

1. [5 points] Let a, b be integers not both zero. Let c also be an integer. Prove that the equation $a x+b y=c$ has a solution (x, y) in \mathbb{Z}^{2} if and only if $\operatorname{gcd}(a, b)$ divides c.
2. Let G and H be groups. A function $\phi: G \mapsto H$ is called a group homomorphism if it satisfies

$$
\phi\left(g_{1} \star g_{2}\right)=\phi\left(g_{1}\right) \circ \phi\left(g_{2}\right), \text { for all } g_{1}, g_{2} \in G .
$$

Here \star is the group operation in G and \circ is the group operation in H.
(a) $\left[21 / 2\right.$ points] Let e_{G} be the identity of G and let e_{H} be the identity of H. Prove that $\phi\left(e_{G}\right)=e_{H}$.
(b) $\left[2 \frac{1}{2}\right.$ points $]$ For all $g \in G$, prove that $\phi\left(g^{-1}\right)=[\phi(g)]^{-1}$.
3. Let G be a group whose identity element is e.
(a) [$21 / 2$ points] Prove that if H and K are finite subgroups of G whose orders are relatively prime, then $H \cap K=\{e\}$.
(b) $\left[2 \frac{1}{2}\right.$ points $]$ Prove that if $g^{2}=e$ for all $g \in G$ then G is abelian.
4. [5 points] Find all solutions of the following equation in \mathbb{Z}_{77} by hand, i.e. not using a computer.

$$
x^{2}+3 x+4=0 \bmod 77
$$

