Mid-semester Exam: 24 points

Date: September 22, 2023

- 1. [6 points] Prove that the one-time pad is
 - (a) perfectly secret.
 - (b) not CPA-secure.

Recall the definition of the one-time pad. For an integer n > 0, set message space \mathcal{M} , key space \mathcal{K} , and ciphertext space \mathcal{C} all equal to $\{0,1\}^n$. Gen chooses key k uniformly from \mathcal{K} . Given k and mesage $m \in \{0,1\}^n$, Enc computes $c \coloneqq k \oplus m$. Given $k, c \in \{0,1\}^n$, Dec computes $m \coloneqq k \oplus c$.

- 2. [6 points] Alice has a length-preserving pseudorandom function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$. She wants to encrypt messages of length 2n. Let $m \in \{0, 1\}^{2n}$ denote the message. Let $m_1 \in \{0, 1\}^n$ denote the first n bits of m and let $m_2 \in \{0, 1\}^n$ denote the last n bits of m. Alice uses the encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ where:
 - Gen: Key k is chosen uniformly from $\{0,1\}^n$.
 - Enc: The message space $\mathcal{M} = \{0,1\}^{2n}$. A string r is chosen uniformly from $\{0,1\}^{n-1}$ and the ciphertext $c \in \{0,1\}^{3n-1}$ corresponding to $m = (m_1, m_2) \in \{0,1\}^{2n}$ is given by

$$c \coloneqq \langle r, m_1 \oplus F_k(0 \| r), m_2 \oplus F_k(1 \| r) \rangle.$$

Here \parallel is the string concatenation operator.

• Dec: Given key k and ciphertext $c = \langle r, c_1, c_2 \rangle \in \{0, 1\}^{3n-1}$, the message $m = (m_1, m_2)$ is decrypted using $m_1 = c_1 \oplus F_k(0||r)$ and $m_2 = c_2 \oplus F_k(1||r)$.

Prove that Alice's scheme is **CPA-secure**. You **cannot use** the CPA-security of CTR mode in your proof.

3. Recall that the PKCS #7 padding scheme is used to pad a message \vec{x} having length some integral number of bytes into a *encoded data* \vec{m} having length jL bytes where L is the block length in bytes. The number of bytes which are appended to \vec{x} to get \vec{m} is b where $1 \le b \le L$. Each of these padding bytes is equal to the byte representation of the integer b. Assume that L < 256 so b can fit in a single byte.

Suppose the encoded data \vec{m} has length 3L bytes, i.e. $\vec{m} = (m_1, m_2, m_3)$ where $|m_i| = L$ bytes for i = 1, 2, 3. Now suppose the encoded data is encrypted using CTR mode where F is a length-preserving pseudorandom function as shown below. The input and output lengths of F_k are both equal to n = 8L bits. Here the value IV is uniformly chosen from $\{0, 1\}^{\frac{3n}{4}}$.

Suppose an adversary has access to a padding oracle. On input some ciphertext block $\vec{c} = (c'_0, c'_1, c'_2, c'_3)$, the padding oracle only returns a message from the set {ok, padding_error}. The ok is returned when there is no padding error in the encoded data $\vec{m'}$ obtained from \vec{c} .

- (a) [2 points] Describe a procedure by which the adversary can recover the **length** b of the padding in the encoded data \vec{m} .
- (b) [2 points] Describe a procedure by which the adversary can recover the **last** byte in the encoded data block m_2 . For example, if L = 3 and $m_2 = 0x01 0x07 0x20$, then 0x20 is the last byte of m_2 .
- (c) [2 points] Describe a procedure by which the adversary can recover the first byte in the encoded data block m_2 . By first byte, we mean the most significant byte. For example, if L = 3 and $m_2 = 0x01 \ 0x07 \ 0x20$, then 0x01 is the first byte of m_2 .
- 4. [6 points] Consider the modification of the CBC-MAC where the message length is appended to the *end of the message*. Let F be a length-preserving pseudorandom function of length n and let $\vec{m} = [m_1, m_2, \ldots, m_l]$ be a message of length ln where each $m_i \in \{0, 1\}^n$. Assume that the the message length in bits satisfies $|\vec{m}| = ln < 2^n$. This allows us to represent $|\vec{m}|$ using n bits. The MAC tag t on \vec{m} is calculated as shown in the below figure.

Show that this construction is an **insecure** MAC for **arbitrary-length** messages. By arbitrary-length messages, we mean that the sender and receiver do not fix l beforehand. The sender can send message-tag pairs (\vec{m}, t) where the number of blocks l in \vec{m} can vary.

Hint: Choose $m_1, m_2 \in \{0, 1\}^n$ where $m_1 \neq m_2$. Query the MAC oracle on m_1 first and then on m_2 . Then choose an $m_3 \in \{0, 1\}^n$ and query the oracle on a message $m_1 ||n|| m_3$. Use the query responses to construct a tag t on a message $a ||b|| c \in \{0, 1\}^{3n}$ which is not in the query set.