1. [6 points] Prove that the one-time pad is
(a) perfectly secret.
(b) not CPA-secure.

Recall the definition of the one-time pad. For an integer $n>0$, set message space \mathcal{M}, key space \mathcal{K}, and ciphertext space \mathcal{C} all equal to $\{0,1\}^{n}$. Gen chooses key k uniformly from \mathcal{K}. Given k and mesage $m \in\{0,1\}^{n}$, Enc computes $c:=k \oplus m$. Given $k, c \in\{0,1\}^{n}$, Dec computes $m:=k \oplus c$.
2. [6 points] Alice has a length-preserving pseudorandom function $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$. She wants to encrypt messages of length $2 n$. Let $m \in\{0,1\}^{2 n}$ denote the message. Let $m_{1} \in\{0,1\}^{n}$ denote the first n bits of m and let $m_{2} \in\{0,1\}^{n}$ denote the last n bits of m. Alice uses the encryption scheme $\Pi=$ (Gen, Enc, Dec) where:

- Gen: Key k is chosen uniformly from $\{0,1\}^{n}$.
- Enc: The message space $\mathcal{M}=\{0,1\}^{2 n}$. A string r is chosen uniformly from $\{0,1\}^{n-1}$ and the ciphertext $c \in\{0,1\}^{3 n-1}$ corresponding to $m=\left(m_{1}, m_{2}\right) \in$ $\{0,1\}^{2 n}$ is given by

$$
c:=\left\langle r, m_{1} \oplus F_{k}(0 \| r), m_{2} \oplus F_{k}(1 \| r)\right\rangle .
$$

Here $\|$ is the string concatenation operator.

- Dec: Given key k and ciphertext $c=\left\langle r, c_{1}, c_{2}\right\rangle \in\{0,1\}^{3 n-1}$, the message $m=$ $\left(m_{1}, m_{2}\right)$ is decrypted using $m_{1}=c_{1} \oplus F_{k}(0 \| r)$ and $m_{2}=c_{2} \oplus F_{k}(1 \| r)$.

Prove that Alice's scheme is CPA-secure. You cannot use the CPA-security of CTR mode in your proof.
3. Recall that the PKCS \#7 padding scheme is used to pad a message \vec{x} having length some integral number of bytes into a encoded data \vec{m} having length $j L$ bytes where L is the block length in bytes. The number of bytes which are appended to \vec{x} to get \vec{m} is b where $1 \leq b \leq L$. Each of these padding bytes is equal to the byte representation of the integer b. Assume that $L<256$ so b can fit in a single byte.
Suppose the encoded data \vec{m} has length $3 L$ bytes, i.e. $\vec{m}=\left(m_{1}, m_{2}, m_{3}\right)$ where $\left|m_{i}\right|=L$ bytes for $i=1,2,3$. Now suppose the encoded data is encrypted using CTR mode where F is a length-preserving pseudorandom function as shown below. The input and output lengths of F_{k} are both equal to $n=8 L$ bits. Here the value $I V$ is uniformly chosen from $\{0,1\}^{\frac{3 n}{4}}$.

Suppose an adversary has access to a padding oracle. On input some ciphertext block $\vec{c}=\left(c_{0}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right)$, the padding oracle only returns a message from the set \{ok, padding_error\}. The ok is returned when there is no padding error in the encoded data \vec{m}^{\prime} obtained from \vec{c}.
(a) [2 points] Describe a procedure by which the adversary can recover the length b of the padding in the encoded data \vec{m}.
(b) [2 points] Describe a procedure by which the adversary can recover the last byte in the encoded data block m_{2}. For example, if $L=3$ and $m_{2}=0 \times 010 \times 070 \times 20$, then 0×20 is the last byte of m_{2}.
(c) [2 points] Describe a procedure by which the adversary can recover the first byte in the encoded data block m_{2}. By first byte, we mean the most significant byte. For example, if $L=3$ and $m_{2}=0 \times 010 \times 070 \times 20$, then 0×01 is the first byte of m_{2}.
4. [6 points] Consider the modification of the CBC-MAC where the message length is appended to the end of the message. Let F be a length-preserving pseudorandom function of length n and let $\vec{m}=\left[m_{1}, m_{2}, \ldots, m_{l}\right]$ be a message of length $l n$ where each $m_{i} \in\{0,1\}^{n}$. Assume that the the message length in bits satisfies $|\vec{m}|=\ln <2^{n}$. This allows us to represent $|\vec{m}|$ using n bits. The MAC $\operatorname{tag} t$ on \vec{m} is calculated as shown in the below figure.

Show that this construction is an insecure MAC for arbitrary-length messages. By arbitrary-length messages, we mean that the sender and receiver do not fix l beforehand. The sender can send message-tag pairs (\vec{m}, t) where the number of blocks l in \vec{m} can vary.
Hint: Choose $m_{1}, m_{2} \in\{0,1\}^{n}$ where $m_{1} \neq m_{2}$. Query the MAC oracle on m_{1} first and then on m_{2}. Then choose an $m_{3} \in\{0,1\}^{n}$ and query the oracle on a message $m_{1}\|n\| m_{3}$. Use the query responses to construct a tag t on a message $a\|b\| c \in\{0,1\}^{3 n}$ which is not in the query set.

