Quiz 1: 20 points

- 1. [5 points] If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then prove that $|\mathcal{K}| \geq |\mathcal{M}|$.
- 2. [5 points] Alice has a length-preserving pseudorandom function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$. She wants to encrypt messages of length 2n. Let $m \in \{0, 1\}^{2n}$ denote the message. Let $m_1 \in \{0, 1\}^n$ denote the first n bits of m and let $m_2 \in \{0, 1\}^n$ denote the last n bits of m. Alice uses the encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ where:
 - Gen: Key k is chosen uniformly from $\{0,1\}^n$.
 - Enc: The message space $\mathcal{M} = \{0,1\}^{2n}$. A string r is chosen uniformly from $\{0,1\}^{n-1}$ and the ciphertext $c \in \{0,1\}^{3n-1}$ corresponding to $m = (m_1, m_2) \in \{0,1\}^{2n}$ is given by

$$c \coloneqq \langle r, m_1 \oplus F_k(r \| 0), m_2 \oplus F_k(1 \| r) \rangle.$$

Here \parallel is the string concatenation operator.

• Dec: Given key k and ciphertext $c = \langle r, c_1, c_2 \rangle \in \{0, 1\}^{3n-1}$, the message $m = (m_1, m_2)$ is decrypted using $m_1 = c_1 \oplus F_k(r||0)$ and $m_2 = c_2 \oplus F_k(1||r)$.

Prove that Alice's scheme is **not CPA-secure**.

- 3. [10 points] Let F be a length-preserving pseudorandom permutation having key length, input length, and output length all equal to n bits. Suppose a fixed-length private key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is defined as follows:
 - Gen: Key k is chosen uniformly from $\{0,1\}^n$.
 - Enc: The message space $\mathcal{M} = \{0, 1\}^{n/2}$. A string r is chosen uniformly from $\{0, 1\}^{n/2}$ and the ciphertext $c \in \{0, 1\}^n$ corresponding to $m \in \{0, 1\}^{n/2}$ is given by

$$c \coloneqq F_k(r \| m).$$

Here \parallel is the string concatenation operator.

• Dec: Given key k and ciphertext $c \in \{0,1\}^n$, the message m is obtained by taking the last n/2 bits of $F_k^{-1}(c)$.

Prove that Π is CPA-secure for messages of length n/2.