1. [5 points] Prove the following statement. Let a, b be positive integers. Then there exist integers X, Y such that $X a+Y b=\operatorname{gcd}(a, b)$. Furthermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed this way.

Note: The greatest common divisor of two integers a, b not both zero, written $\operatorname{gcd}(a, b)$, is the largest integer c such that $c \mid a$ and $c \mid b$.
2. Let G be a finite abelian group. Let H be a subgroup of G. A coset of H is a set of the form $g+H=\{g+h \mid h \in H\}$ for a fixed $g \in G$. Prove the following statements.
(a) $[11 / 2$ points] Two cosets of H are either equal or disjoint.
(b) $\left[1 \frac{1}{2}\right.$ points $]$ All cosets of H have the same cardinality.
(c) [2 points] Use the two results above, to prove Lagrange's theorem, i.e. $|H|$ divides $|G|$.

Note: A set G with a binary operation $*$ is called a group if

- $a * b \in G$ for all $a, b \in G$.
- There exists an element $e \in G$ such that $a * e=e * a=a$ for all $a \in G$.
- For every $a \in G$, there is an element $b \in G$ such that $a * b=b * a=e$
- For all $a, b, c \in G$, we have $a *(b * c)=(a * b) * c$

A subgroup H of G which is itself a group under the same binary operation.
3. [5 points] An integer $a \in \mathbb{Z}_{N}^{*}$ is called a witness for compositeness of N if $a^{N-1} \neq$ $1 \bmod N$. Prove the following statement. If there exists a witness in \mathbb{Z}_{N}^{*} that N is composite, then at least half the elements of \mathbb{Z}_{N}^{*} are witnesses that N is composite.

Note: $\mathbb{Z}_{N}^{*}=\{i \in\{1,2, \ldots, N-1\} \mid \operatorname{gcd}(i, N)=1\}$ is a group with multiplication modulo N as the operation.
4. [5 points] Show that the Diffie-Hellman protocol is insecure against a man-in-themiddle attack. The setting is as follows:

- Alice and Bob want to generate a shared key using the Diffie-Hellman protocol.
- An attacker Eve can intercept messages sent by Alice/Bob and replace the messages with her own messages.
- The attack is successful if Eve knows the key k_{A} which Alice generates or if Eve knows the key k_{B} that Bob generates. Note that k_{A} need not be equal to k_{B}.

