Quiz 2: 20 points

1. [5 points] Prove the following statement. Let a, b be positive integers. Then there exist integers X, Y such that Xa + Yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed this way.

Note: The greatest common divisor of two integers a, b not both zero, written gcd(a, b), is the largest integer c such that $c \mid a$ and $c \mid b$.

- 2. Let G be a finite **abelian** group. Let H be a subgroup of G. A coset of H is a set of the form $g + H = \{g + h \mid h \in H\}$ for a fixed $g \in G$. Prove the following statements.
 - (a) $[1\frac{1}{2} \text{ points}]$ Two cosets of H are either equal or disjoint.
 - (b) $[1\frac{1}{2} \text{ points}]$ All cosets of *H* have the same cardinality.
 - (c) [2 points] Use the two results above, to prove Lagrange's theorem, i.e. |H| divides |G|.

Note: A set G with a binary operation \ast is called a group if

- $a * b \in G$ for all $a, b \in G$.
- There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$.
- For every $a \in G$, there is an element $b \in G$ such that a * b = b * a = e
- For all $a, b, c \in G$, we have a * (b * c) = (a * b) * c

A subgroup H of G which is itself a group under the same binary operation.

3. [5 points] An integer $a \in \mathbb{Z}_N^*$ is called a **witness for compositeness of** N if $a^{N-1} \neq 1 \mod N$. Prove the following statement. If there exists a witness in \mathbb{Z}_N^* that N is composite, then at least half the elements of \mathbb{Z}_N^* are witnesses that N is composite.

Note: $\mathbb{Z}_N^* = \{i \in \{1, 2, ..., N-1\} \mid \gcd(i, N) = 1\}$ is a group with multiplication modulo N as the operation.

- 4. [5 points] Show that the Diffie-Hellman protocol is **insecure** against a **man-in-themiddle attack**. The setting is as follows:
 - Alice and Bob want to generate a shared key using the Diffie-Hellman protocol.
 - An attacker Eve can intercept messages sent by Alice/Bob and replace the messages with her own messages.
 - The attack is successful if Eve knows the key k_A which Alice generates or if Eve knows the key k_B that Bob generates. Note that k_A need not be equal to k_B .