
EE 720 Lecture Notes
Autumn 2023

Saravanan Vijayakumaran

December 13, 2024



Table of contents

Preface 1

About Me 2

1 Perfectly Secret Encryption 3
1.1 Proof of Lemma 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Forward Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Reverse Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Private-Key Encryption 7
2.1 Proof that EAV-Security Implies Definition 3.9 . . . . . . . . . . . . . . . . . . . . . 7

3 CCA-Security and Authenticated Encryption 10
3.1 CBC-Mode Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Padding Scheme from PKCS #7 Standard . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Decryption Oracle from Padding Errors . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Padding Oracle Attack Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Learning b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Learning m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.3 Learning m1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Number Theory 15
4.1 Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Square-and-Multiply Algorithm for Group Exponentiation . . . . . . . . . . . . . . 17

i



Preface

These notes were created to support the course EE720: An Introduction to Number Theory and
Cryptography at IIT Bombay. This course runs in the Electrical Engineering department and is
offered to both undergraduate and postgraduate students.

I have taught EE720 three times (2018–2020) using the excellent textbook Introduction to Modern
Cryptography by Jonathan Katz and Yehuda Lindell. Time constraints allowed me to cover only a
small subset of the book’s content. I used other sources to teach topics from abstract algebra in
more detail.

These notes are meant to supplement the book by Katz & Lindell. They will contain the following.

• Proofs of some results stated without proof in the book.
• Expanded coverage of some material relevant to the course.

Saravanan Vijayakumaran
July 2023

. Warning

These notes are a work in progress and may contain errors. Please email the author at
sarva@ee.iitb.ac.in to report any errors.

1

https://www.cs.umd.edu/~jkatz/imc.html
https://www.cs.umd.edu/~jkatz/imc.html
mailto:sarva@ee.iitb.ac.in?subject=Error%20in%20EE720%20Lecture%20Notes


About Me

My name is Saravanan Vijayakumaran. I am an Associate Professor in the Department of Electrical
Engineering at IIT Bombay. I am currently (mid 2023) interested in cryptocurrency blockchains
and applications of zero-knowledge proofs.

2

https://www.ee.iitb.ac.in/~sarva/
https://www.ee.iitb.ac.in/
https://www.ee.iitb.ac.in/
https://www.iitb.ac.in/


Chapter 1

Perfectly Secret Encryption

1.1 Proof of Lemma 2.7
Lemma 1.1. Encryption scheme Π = (Gen, Enc, Dec) is perfectly secret if and only if it is perfectly
indistinguishable.

1.1.1 Forward Direction
• Suppose a scheme Π = (Gen, Enc, Dec) is perfectly secret.
• Consider an adversary A who picks two messages m0, m1 and gives it to Π.
• Π picks a bit b randomly and a key k. It gives c = Enck(mb) to A.
• A outputs b′.
• We want to prove that Pr[b = b′] = 1

2 . Note abuse of notation; lower case letters for random
variables.

1.1.1.1 Deterministic Adversary

• If A is deterministic, then there exists a partition C0, C1 of C such that C0 ∩ C1 = ∅ and

A(c) =

0 if c ∈ C0,

1 if c ∈ C1.

3



CHAPTER 1. PERFECTLY SECRET ENCRYPTION 4

Then we have

Pr[b = b′] = Pr[A(C) = 0 | b = 0] + Pr[A(C) = 1 | b = 1]
2

= Pr[C ∈ C0 | b = 0] + Pr[C ∈ C1 | b = 1]
2

Consider the first term in the numerator

Pr[C ∈ C0 | b = 0] = Pr[C ∈ C0 |M = m0]
=
∑
c∈C0

Pr[C = c |M = m0] =
∑
c∈C0

Pr[C = c]

= Pr[C ∈ C0]

Similarly, the second term in the numerator is equal to Pr[C ∈ C1]. Plugging these back into the
previous equation, we get

Pr[b = b′] = Pr[C ∈ C0] + Pr[C ∈ C1]
2 = 1

2 .

1.1.1.2 Probabilistic Adversary (not exclusive from previous case)

Suppose the adversary is probabilistic.

Pr[b = b′] = Pr[A(C) = 0 | b = 0] + Pr[A(C) = 1 | b = 1]
2

Consider the first term in the numerator.

Pr[A(C) = 0 | b = 0] =
∑
c∈C

Pr[A(C) = 0 | b = 0, C = c] Pr[C = c | b = 0]

=
∑
c∈C

Pr[A(C) = 0 | C = c] Pr[C = c | b = 0]

=
∑
c∈C

Pr[A(C) = 0 | C = c] Pr[C = c]

= Pr[A(C) = 0].

where the second equality follows because the adversary’s decision is independent of the message
once we condition on the ciphertext, and the third equality follows from Lemma 2.5 and the
assumption of perfect secrecy.



CHAPTER 1. PERFECTLY SECRET ENCRYPTION 5

Similarly, we have Pr[A(C) = 1 | b = 1] = Pr[A(C) = 1]. Plugging these back into the previous
equation, we get

Pr[b = b′] = Pr[A(C) = 0] + Pr[A(C) = 1]
2 = 1

2 .

1.1.2 Reverse Direction
Let A be perfect secrecy and B be perfect indistinguishability. We have already proved A =⇒ B.

To prove B =⇒ A, we can prove Ac =⇒ Bc.

Suppose Π is not perfectly secret. Then there exist m, m′ ∈M and c0 ∈ C such that

Pr[C = c0 |M = m] ̸= Pr[C = c0 |M = m′].

WLOG, assume
Pr[C = c0 |M = m] > Pr[C = c0 |M = m′]

We need to construct an adversary who can exploit this fact. A natural choice for m and m′ is
m0 = m and m1 = m′.

What should the strategy be? Consider the following strategy

b′ = A(c) =

0 if c = c0,

random bit if c ̸= c0.

We have

Pr[b = b′] = Pr[A(C) = 0 | b = 0] + Pr[A(C) = 1 | b = 1]
2 .

Consider the first term in the numerator.

Pr[A(C) = 0 | b = 0] = Pr[A(C) = 0 | b = 0, C = c0] Pr[C = c0 | b = 0]
+ Pr[A(C) = 0 | b = 0, C ̸= c0] Pr[C ̸= c0 | b = 0]

=1 · Pr[C = c0 | b = 0] + 1
2 Pr[C ̸= c0 | b = 0].



CHAPTER 1. PERFECTLY SECRET ENCRYPTION 6

Consider the second term in the numerator.

Pr[A(C) = 1 | b = 1] = Pr[A(C) = 1 | b = 1, C = c0] Pr[C = c0 | b = 1]
+ Pr[A(C) = 1 | b = 1, C ̸= c0] Pr[C ̸= c0 | b = 1]

=1
2 Pr[C ̸= c0 | b = 1].

Combining these two equations, we get

Pr[b = b′] =
Pr[C = c0 | b = 0] + 1

2 Pr[C ̸= c0 | b = 0] + 1
2 Pr[C ̸= c0 | b = 1]

2

>
1
2 Pr[C = c0 | b = 0] + 1

2 Pr[C = c0 | b = 1] + 1
2 Pr[C ̸= c0 | b = 0] + 1

2 Pr[C ̸= c0 | b = 1]
2

= Pr[C = c0] + Pr[C ̸= c0]
2 = 1

2 .



Chapter 2

Private-Key Encryption

2.1 Proof that EAV-Security Implies Definition 3.9
Suppose that a private-key encryption scheme Π = (Gen, Enc, Dec) is EAV-secure.

Let outA
(
PrivKeav

A,Π(n, b)
)

denote the output b′ of A when mb is encrypted

We want to prove that for all PPT adversaries A there is a negligible function negl such that, for
all n, ∣∣∣Pr

[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]
− Pr

[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]∣∣∣ ≤ negl(n). (2.1)

Since Π is EAV-secure, we have Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2 + negl(n). It follows that

Pr
[
PrivKeav

A,Π(n) = 1
]

= Pr[b′ = b]

= Pr[b′ = 0 | b = 0] + Pr[b′ = 1 | b = 1]
2

=
Pr
[
outA

(
PrivKeav

A,Π(n, 0)
)

= 0
]

+ Pr
[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]

2

=
1− Pr

[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]

+ Pr
[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]

2
≤ 1

2 + negl(n),

7



CHAPTER 2. PRIVATE-KEY ENCRYPTION 8

The final inequality gives us

Pr
[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]
− Pr

[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]
≤ negl(n).

But the result in Equation 2.1 has an absolute value on the left hand side. So if we can also show
that

Pr
[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]
− Pr

[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]
≤ negl(n),

then we will be done.

Claim: If Π = (Gen, Enc, Dec) is EAV-secure, then for any PPT adversary A the following must
hold: Pr

[
PrivKeav

A,Π(n) = 1
]
≥ 1

2 − negl(n).

In other words, it is not possible for a PPT adversary to fail with probability that is too far away
from 1

2 . Let us rearrange the terms in our claim.

Pr
[
PrivKeav

A,Π(n) = 1
]
≥ 1

2 − negl(n)

⇐⇒ 1
2 − Pr

[
PrivKeav

A,Π(n) = 1
]
≤ negl(n)

We will prove our claim by contradiction. Suppose that the function 1
2 − Pr

[
PrivKeav

A,Π(n) = 1
]

is
not negligible. Then there is an adversary A′ and a positive polynomial p(n) such that

1
2 − Pr

[
PrivKeav

A′,Π(n) = 1
]

>
1

p(n)

for infinitely many n. This implies that

Pr[b′ = b] = Pr
[
PrivKeav

A′,Π(n) = 1
]

<
1
2 −

1
p(n)

for infinitely many n, where b′ is the output of A′ and b is the bit chosen in the experiment.

Since A′ is good at failing in the experiment, flipping the output of A′ will give us an adversary
that will succeed with a probability that is significantly better than 1

2 .

Consider an adversary A′′ who uses A′ as a subroutine and outputs the opposite of whatever A′

outputs.

b′′ = A′′(c) = 1−A′(c) =

0 if b′ = 1,

1 if b′ = 0.



CHAPTER 2. PRIVATE-KEY ENCRYPTION 9

If A′ is PPT, then A′′ is also PPT. Then we have

Pr[b′′ = b] = Pr[b′ ̸= b] = 1− Pr[b′ = b]

= 1− Pr[b′ = b] > 1−
(

1
2 −

1
p(n)

)

= 1
2 + 1

p(n)

for infinitely many n. This is a contradiction. Hence our claim must be true.

We then have
1
2 − Pr

[
PrivKeav

A,Π(n) = 1
]
≤ negl(n)

⇐⇒ 1
2 − Pr [b′ = b] ≤ negl(n)

⇐⇒ 1− Pr[b′ = 0 | b = 0]− Pr[b′ = 1 | b = 1]
2 ≤ negl(n)

⇐⇒ Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1]
2 ≤ negl(n)

⇐⇒ Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1] ≤ 2negl(n)
⇐⇒ Pr

[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]
− Pr

[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]
≤ 2negl(n).

As 2negl(n) is also negligible, we have the other inequality we need to prove that∣∣∣Pr
[
outA

(
PrivKeav

A,Π(n, 0)
)

= 1
]
− Pr

[
outA

(
PrivKeav

A,Π(n, 1)
)

= 1
]∣∣∣ ≤ negl(n).



Chapter 3

CCA-Security and Authenticated
Encryption

3.1 CBC-Mode Encryption

Let m⃗ = ⟨m1, m2, . . . , ml⟩ where mi ∈ {0, 1}n. Let F be a block cipher with block length n. To
encrypt m⃗, the following steps are followed.

1. A uniform initialization vector (IV) of length n is chosen

2. c0 = IV . For i = 1, . . . , l,
ci := Fk(ci−1 ⊕mi).

To decrypt the ciphertext, for i = 1, 2, . . . , l,
mi := F −1

k (ci)⊕ ci−1.

10



CHAPTER 3. CCA-SECURITY AND AUTHENTICATED ENCRYPTION 11

3.2 Padding Scheme from PKCS #7 Standard
In CBC-mode encryption, the message length is a multiple of the block length. If not, message
needs to be padded.

Let m denote the original message. Assume that |m| is an integral number of bytes. Let L be the
block length of F in bytes. We will assume that L < 256, so it can fit in a byte.

Let b denote the padding length in bytes. We will require that b is an integer from 1 to L, i.e. b = 0
is not allowed.

We append to the message the integer b (represented in 1 byte) repeated b times. For example, if 4
bytes are needed then 0x04040404 is appended. If |m| is already a multiple of L, then L bytes are
appended each of which is equal to L.

To remove the padding, the receiver first applies the decryption algorithm on the ciphertext
corresponding to encoded data. The value b of the last byte of the encoded data is read. The final
b bytes of the encoded data are checked to be equal to b.

3.3 Decryption Oracle from Padding Errors
If padding is incorrect, the standard procedure is to return a “bad padding” error. This error
message is a partial decryption oracle. Using these error messages, an attacker can completely
recover the original message.

3.4 Padding Oracle Attack Example



CHAPTER 3. CCA-SECURITY AND AUTHENTICATED ENCRYPTION 12

Consider a 3-block ciphertext from CBC-mode encryption. The second plaintext block is obtained
as

m2 = F −1
k (c2)⊕ c1.

Note that m2 ends in 0xb0xb . . . 0xb.

Suppose an attacker changes c1 to c′
1, but keeps IV and c2 the same. Then m2 is changed to

m′
2 = F −1

k (c2)⊕ c′
1.

If the c1 and c′
1 differ only in the ith byte, then m2 and m′

2 also differ only in the ith byte.

3.4.1 Learning b

Suppose there is a server that receives ciphertexts and returns padding oracle error (if any). The
attacker can learn b as follows.

• The attacker modifies the first byte of c1 to get c′
1, and sends (IV, c′

1, c2) to the server
– If error is returned, then b = L
– The server is reading all L bytes of m′

2
• Otherwise, the attacker modifies the second byte of c1 and sends (IV, c′

1, c2). And so on.
• The first byte where decryption fails reveals b

3.4.2 Learning m2

Suppose b = L. Then the message block m2 consists of L bytes each equal to L. Only m1 remains
to be recovered. The method for recovering m1 is described in the next section.

Consider the case when b < L. The attacker knows that the m2 ends with

0xM0xb . . . 0xb

where M is an unknown byte.

Define ∆i as

∆i =0x00 · · · 0x00 0xi

b times︷ ︸︸ ︷
0x(b + 1) · · · 0x(b + 1)

⊕0x00 · · · 0x00 0x00
b times︷ ︸︸ ︷

0xb · · · 0xb

M is recovered as follows.



CHAPTER 3. CCA-SECURITY AND AUTHENTICATED ENCRYPTION 13

• Attacker sends (IV, c1 ⊕∆i, c2) to the server
• The final b + 1 bytes of the resulting encoded data are

0x(M ⊕ i) 0x(b + 1) · · · 0x(b + 1)︸ ︷︷ ︸
b times

• Decryption fails unless 0x(M ⊕ i) = 0x(b + 1)
• Attacker needs to try at most 256 values for i
• When decryption succeeds, attacker learns that

M = 0x(b + 1)⊕ 0xi

If b = L−1, m2 has now been fully recovered and the attacker can proceed to recover m1. Otherwise,
the attacker knows that the m2 ends with

0xM0xa0xb . . . 0xb

for an unknown M and known a.

The attacker uses a technique similar to the one described above to recover the remaining bytes of
m2.

3.4.3 Learning m1

In the normal scenario, message block m1 is decrypted as

m1 = F −1
k (c1)⊕ IV.

Suppose an attacker changes IV to IV ′, but keeps c1 the same. Then m1 is changed to

m′
1 = F −1

k (c1)⊕ IV ′.

If the IV and IV ′ differ only in the ith byte, then m1 and m′
1 also differ only in the ith byte.

For 0 ≤ i ≤ 255, the attacker chooses ∆i defined as

∆i = 0∥0∥ · · · ∥0︸ ︷︷ ︸
L−1 times

∥ i︸︷︷︸
1 byte

where i is the byte representation of the integer i and 0 is the byte representation of the integer 0.



CHAPTER 3. CCA-SECURITY AND AUTHENTICATED ENCRYPTION 14

The attacker calculates IV (i) = IV ⊕∆i and sends (IV (i), c1) to the padding oracle. Then m1 is
changed to

m
(i)
1 = F −1

k (c1)⊕ IV (i) = F −1
k (c1)⊕ IV ⊕∆i = m1 ⊕∆i.

The key observation is that there exists at least one i for which the padding oracle returns ok.
And there may be more than one value of such an i.

Let m1,j denote the jth byte of m1 for j ∈ {1, 2, . . . , L}.

• The value of i such that m1,L ⊕ i = 1 will result in an ok response from the padding oracle
irrespective of the values of the other bytes m1,1, m1,2, · · · , m1,L−1. It corresponds to the case
of 1 byte of padding.

• The value of i such that m1,L ⊕ i = 2 will also result in an ok response if m1,L−1 = 2.
• The value of i such that m1,L⊕ i = 3 will also result in an ok response if m1,L−2 = m1,L−1 = 3.

To distinguish between these possible cases, the attacker first finds an i such that the padding
oracle returns ok. At this point, the attacker knows that (IV (i), c1) corresponds to a message m(i)

that ends with b bytes each equal to b, for some unknown b.

Then the attacker uses the technique in Section 3.4.1 to estimate the padding length b in the
encoded data corresponding to (IV (i), c1). The details are left as an exercise.

Since m1,L ⊕ i = b and i is known, he can recover m1,L. This also reveals that the values of b− 1
bytes m1,L−b+1, . . . , m1,L−2, m1,L−1 are all equal to b.

If b = L, all the bytes of m1 have been recovered. Once again, consider the case when b < L. The
attacker knows that the m

(i)
1 = m1 ⊕∆i ends with

0xM0xb . . . 0xb

where M is an unknown byte. The attacker uses the technique in Section 3.4.2 to recover all the
remaining bytes in m1. The details are left as an exercise.



Chapter 4

Number Theory

4.1 Lagrange’s Theorem
Theorem 4.1 (Lagrange). If H is a subgroup of a finite group G, then |H| divides |G|.

Definition 4.1. Let H be a subgroup of a group G. For any g ∈ G, the set H +g = {h + g | h ∈ H}
is called a right coset of H.

To prove Lagrange’s theorem, we need the following lemmas

Lemma 4.1. Two right cosets of a subgroup are either equal or disjoint.

Proof. Suppose two right cosets H + g1 and H + g2 are disjoint. Then there is nothing to prove.

Suppose that they are not disjoint, i.e. H + g1 ∩H + g2 ̸= ∅.

Let g ∈ H + g1 ∩H + g2. Then

g = h1 + g1 = h2 + g2

for some h1, h2 ∈ H. This implies that

g1 = −h1 + h2 + g2,

g2 = −h2 + h1 + g1.

To show that the two right cosets are equal, we show that they are subsets of each other.

15



CHAPTER 4. NUMBER THEORY 16

Let a ∈ H + g1. Then a = h3 + g1 for some h3 ∈ H. Substituting for g1 we get

a = h3 − h1 + h2 + g2 = h′ + g2.

for some h′ ∈ H. This implies that a ∈ H + g2. Hence H + g1 ⊆ H + g2.

Let b ∈ H + g2. Then b = h4 + g2 for some h4 ∈ H. Substituting for g2 we get

b = h4 − h2 + h1 + g1 = h′′ + g1.

for some h′′ ∈ H. This implies that b ∈ H + g1. Hence H + g2 ⊆ H + g1.

So the two right cosets H + g1 and H + g2 are equal.

Lemma 4.2. If H is a finite subgroup, then all its right cosets have the same cardinality.

Proof. We claim that the map fg : H 7→ H + g given by fg(h) = h + g is a one-to-one map.

If fg(h1) = fg(h2), the h1 + g = h2 + g. By the cancellation law, we get h1 = h2. So fg is a
one-to-one map.

This implies that all cosets have the same number of elements as H, completing the proof of the
lemma.

Theorem 4.1. Note that every g ∈ G belongs to a right coset. This is because we can write g as
e + g where e is the identity of the group. As e also belongs to H, we have that g ∈ H + g.

When ∐ denotes disjoint union, we have

G =
⋃
g

(H + g)

=
k∐

i=1
(H + gi)

for some g1, g2, . . . , gk. Counting elements on both sides we get

|G| =
k∑

i=1
|H + gi|

=
k∑

i=1
|H|

= k|H|.

This implies that |H| divides |G|.



CHAPTER 4. NUMBER THEORY 17

4.2 Square-and-Multiply Algorithm for Group Exponenti-
ation

Suppose G is a group with an operation expressed in mutliplicative notation. To compute gm, it
might seem that m− 1 multiplications are required. One can reduce the number of multiplications
required by using the square-and-multiply algorithm.

For example, to compute g8, one can compute

• g1 = g2 using one multiplication
• g2 = g2

1 using one multiplication
• g3 = g2

2 using one multiplication

But g3 = g2
2 = g4

1 = g8. So g8 can be calculated using 3 multiplications instead of 7 multiplications.

The above example uses the fact that 8 = 23. But how can we handle the case when the exponent
is not a power of 2?

Let the binary representation of m be (bk−1, bk−2, . . . , b1, b0) where b0 is the least significant bit.
Let e be the identity of the group. Then gm can be calculated as follows.

y ← e, i← k − 1
while i ≥ 0

y ← y2

if bi = 0 then y ← g · y
i← i− 1

return y

The running time of the above algorithm is proportional to k, the number of bits in the exponent m


	Preface
	About Me
	Perfectly Secret Encryption
	Proof of Lemma 2.7
	Forward Direction
	Reverse Direction


	Private-Key Encryption
	Proof that EAV-Security Implies Definition 3.9

	CCA-Security and Authenticated Encryption
	CBC-Mode Encryption
	Padding Scheme from PKCS #7 Standard
	Decryption Oracle from Padding Errors
	Padding Oracle Attack Example
	Learning b
	Learning m_2
	Learning m_1


	Number Theory
	Lagrange's Theorem
	Square-and-Multiply Algorithm for Group Exponentiation


