Assignment 3: 20 points

- 1. [5 points] Let a, b be integers not both zero. Let c also be an integer. Prove that the equation ax + by = c has a solution (x, y) in \mathbb{Z}^2 if and only if gcd(a, b) divides c.
- 2. Let G and H be groups. A function $\phi: G \mapsto H$ is called a **group homomorphism** if it satisfies

 $\phi(g_1 \star g_2) = \phi(g_1) \circ \phi(g_2)$, for all $g_1, g_2 \in G$.

Here \star is the group operation in G and \circ is the group operation in H.

- (a) $[2^{1/2}_{2} \text{ points}]$ Let e_{G} be the identity of G and let e_{H} be the identity of H. Prove that $\phi(e_{G}) = e_{H}$.
- (b) [2¹/₂ points] For all $g \in G$, prove that $\phi(g^{-1}) = [\phi(g)]^{-1}$.

3. Let G be a group whose identity element is 1.

- (a) [2¹/₂ points] Prove that if H and K are finite subgroups of G whose orders are relatively prime, then $H \cap K = \{e\}$.
- (b) [2¹/₂ points] Prove that if $g^2 = 1$ for all $g \in G$ then G is abelian.
- 4. [5 points] Find all solutions of the following equation in \mathbb{Z}_{77} by hand, i.e. not using a computer.

$$x^2 + 3x + 4 = 0 \mod 77.$$