EE 720: Introduction to Number Theory and Cryptography (Autumn 2025)

Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay

Date: October 9, 2025

Assignment 3: 20 points

- 1. [5 points] Let a, b be integers not both zero. Let c also be an integer. Prove that the equation ax + by = c has a solution (x, y) in \mathbb{Z}^2 if and only if $\gcd(a, b)$ divides c.
- 2. Let G and H be groups. A function $\phi: G \mapsto H$ is called a **group homomorphism** if it satisfies

$$\phi(g_1 \star g_2) = \phi(g_1) \circ \phi(g_2)$$
, for all $g_1, g_2 \in G$.

Here \star is the group operation in G and \circ is the group operation in H.

- (a) $[2\frac{1}{2} \text{ points}]$ Let e_G be the identity of G and let e_H be the identity of H. Prove that $\phi(e_G) = e_H$.
- (b) $[2\frac{1}{2}$ points] For all $g \in G$, prove that $\phi(g^{-1}) = [\phi(g)]^{-1}$.
- 3. [5 points] Compute $101^{4,800,000,002} \mod 35$ using the properties of \mathbb{Z}_{35}^* .
- 4. [5 points] Solve the following system of congruences using the Chinese remainder theorem.

$$x = 2 \mod 11,$$

$$x = 3 \mod 12,$$

$$x = 4 \mod 13$$
.