

- [5 points] Let G be a finite group of order m . Prove that $g^m = 1$ for all $g \in G$ where 1 is the identity of the group.
- Let $N = pq$ where p and q are integers greater than 1 such $\gcd(p, q) = 1$. Consider the mapping f from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$ given by $f(x) = (x \bmod p, x \bmod q)$.
 - [2 points] Prove that if p divides M and q divides M , then N divides M for some integer M . Use this result, to prove that the map f is a bijection from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$.
 - [3 points] For $(a, b) \in \mathbb{Z}_p \times \mathbb{Z}_q$, find $f^{-1}((a, b)) \in \mathbb{Z}_N$ as a function of a and b . For $(a, b) \in \mathbb{Z}_p^* \times \mathbb{Z}_q^*$, show that $f^{-1}((a, b))$ belongs to \mathbb{Z}_N^* .
- [5 points] Solve the following system of congruences using the Chinese remainder theorem. Show your steps and reduce your answer to an element in \mathbb{Z}_{67830} .

$$\begin{aligned} x &= 2 \bmod 14, \\ x &= 3 \bmod 15, \\ x &= 4 \bmod 17, \\ x &= 5 \bmod 19. \end{aligned}$$

- [5 points] For prime $p > 2$ and $x \in \mathbb{Z}_p^*$, the Jacobi symbol of x modulo p is given by

$$\mathcal{J}_p(x) = \begin{cases} +1 & \text{if } x \in \mathcal{QR}_p, \\ -1 & \text{if } x \in \mathcal{QNR}_p. \end{cases}$$

In the above definition, the sets \mathcal{QR}_p and \mathcal{QNR}_p correspond to quadratic residues and quadratic non-residues modulo p , respectively. Prove the following.

- (a) The only square roots of 1 in \mathbb{Z}_p are $+1$ and -1 .
- (b) $\mathcal{J}_p(x) = x^{\frac{p-1}{2}} \bmod p$

Hint: You can assume that \mathbb{Z}_p^* is cyclic without proof.

- [5 points] In the coin-flipping over telephone protocol, Alice initially sends the integer N to Bob where $N = pq$ for distinct odd primes p and q . Assume that $p = q = 3 \bmod 4$. Describe the rest of the protocol by
 - specifying the sequence of messages exchanged between Alice and Bob,
 - the computations performed by Alice and Bob, and
 - the conditions under which Alice wins and the conditions under which Bob wins.

- Let G be a cyclic group of order q and generator g .

- [3 points] Describe the Schnorr identification scheme over G where an identity corresponds to the knowledge of the discrete logarithm x of an element $h = g^x$ in G .
- [2 points] Explain how the Schnorr signature scheme is derived from the Schnorr identification scheme. Specify the signing and verification algorithms.

7. Let GenModulus be a PPT algorithm that on input 1^n outputs (N, p, q) where $N = pq$ and p, q are n -bit primes except with probability negligible in n .

- [2 points] Using GenModulus , describe the Goldwasser-Micali encryption scheme for a message space $\mathcal{M} = \{0, 1\}$.
- [3 points] Prove that the Goldwasser-Micali encryption scheme is CPA-secure if the quadratic residuosity problem is hard relative to GenModulus .

Note 1: We say that **deciding quadratic residuosity is hard relative to GenModulus** if for all PPT algorithms D there exists a negligible function negl such that

$$\left| \Pr[D(N, \text{qr}) = 1] - \Pr[D(N, \text{qnr}) = 1] \right| \leq \text{negl}(n)$$

where in each case the probabilities are taken over the experiment in which $\text{GenModulus}(1^n)$ is run to give (N, p, q) , qr is chosen uniformly from \mathcal{QR}_N , and qnr is chosen uniformly from \mathcal{QR}_N^{+1}

Note 2: The **eavesdropping indistinguishability experiment** $\text{PubK}_{\mathcal{A}, \Pi}^{\text{eav}}(n)$ where $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is described below.

1. A key pair (pk, sk) is generated by running $\text{Gen}(1^n)$.
2. The adversary \mathcal{A} is given pk . It outputs a pair of messages $m_0, m_1 \in \mathcal{M}_{pk}$ of the same length.
3. A uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_{pk}(m_b)$ is computed and given to \mathcal{A} . c is called the *challenge ciphertext*.
4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If output is 1, we say that \mathcal{A} succeeds.

Note 3: A public-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has **indistinguishable encryptions in the presence of an eavesdropper**, or is **EAV-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n ,

$$\Pr[\text{PubK}_{\mathcal{A}, \Pi}^{\text{eav}}(n) = 1] \leq \frac{1}{2} + \text{negl}(n).$$

Note 4: A public-key encryption scheme which is EAV-secure is also CPA-secure since the adversary already has access to an encryption oracle (through the public key).

8. Let \mathcal{G} be a cyclic group generation algorithm that on input 1^n outputs a triple (G, q, g) where G is a cyclic group of prime order q having generator g .

- [2 points] Using \mathcal{G} , describe the El Gamal encryption scheme.
- [3 points] Prove that the El Gamal encryption scheme is CPA-secure if the decisional Diffie-Hellman (DDH) problem is hard relative to a cyclic group generation algorithm \mathcal{G} .

Note 1: Let \mathcal{G} be a cyclic group generation algorithm that on input 1^n outputs a triple (G, q, g) where G is a cyclic group of prime order q having generator g .

We say the **DDH problem is hard relative to \mathcal{G}** if for all PPT algorithms \mathcal{A} there exists a negligible function negl such that

$$\left| \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] \right| \leq \text{negl}(n)$$

where $x, y, z \in \mathbb{Z}_q$ are uniformly chosen