

1. [3 points] If $(\text{Gen}, \text{Enc}, \text{Dec})$ is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then prove that $|\mathcal{K}| \geq |\mathcal{M}|$.

Note: An encryption scheme $(\text{Gen}, \text{Enc}, \text{Dec})$ with message space \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m \mid C = c] = \Pr[M = m].$$

2. The shift cipher has message space $\mathcal{M} = \{0, 1, \dots, 25\}^n$, ciphertext space $\mathcal{C} = \{0, 1, \dots, 25\}^n$, and keyspace $\mathcal{K} = \{0, 1, \dots, 25\}$ where $n \geq 1$. For $m_1 m_2 \dots m_n \in \mathcal{M}$, the ciphertext is given by $c_1 c_2 \dots c_n$ where $c_i = m_i + k \bmod 26$ and k is chosen uniformly from \mathcal{K} .

(a) [2 points] For $n = 1$, show that the shift cipher is perfectly secret.
 (b) [1 point] For $n > 1$, by question 1 the shift cipher cannot be perfectly secret. Give an example of a probability distribution over \mathcal{M} , a message $m \in \mathcal{M}$, and a ciphertext $c \in \mathcal{C}$ for which $\Pr[C = c] > 0$ such that $\Pr[M = m \mid C = c] \neq \Pr[M = m]$.

3. [6 points] If $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a length-preserving keyed pseudorandom function, then prove that the below construction is a CPA-secure private-key encryption scheme for messages of length n .

- **Gen:** On input 1^n , choose k uniformly from $\{0, 1\}^n$.
- **Enc:** Given $k \in \{0, 1\}^n$ and message $m \in \{0, 1\}^n$, choose uniform $r \in \{0, 1\}^n$ and output the ciphertext

$$c := \langle r, F_k(r) \oplus m \rangle.$$

- **Dec:** Given $k \in \{0, 1\}^n$ and ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s.$$

Note 1: F is a pseudorandom function if for any PPT distinguisher D , there is a negligible function negl such that:

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \leq \text{negl}(n),$$

where the first probability is taken over uniform choice of $k \in \{0, 1\}^n$ and the randomness of D , and the second probability is taken over uniform choice of $f \in \text{Func}_n$ and the randomness of D . The set Func_n is the set of all functions with domain and range equal to $\{0, 1\}^n$. By $D^{F_k(\cdot)}(1^n)$ and $D^{f(\cdot)}(1^n)$, we mean distinguishers D who have oracle access to F_k and f respectively.

Note 2: A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack, or is **CPA-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n ,

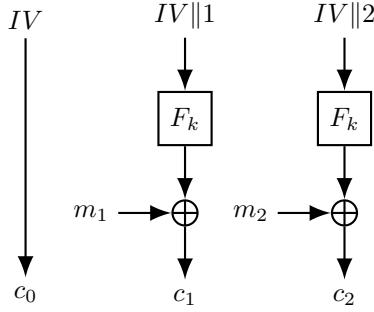
$$\Pr[\text{PrivK}_{\mathcal{A}, \Pi}^{\text{CPA}}(n) = 1] \leq \frac{1}{2} + \text{negl}(n).$$

Specification of the experiment $\text{PrivK}_{\mathcal{A}, \Pi}^{\text{CPA}}(n)$:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$, and outputs a pair of messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
3. A uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
4. The adversary \mathcal{A} continues to have oracle access to $\text{Enc}_k(\cdot)$, and outputs a bit b' .
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If output is 1, we say that \mathcal{A} succeeds.

4. Recall that the PKCS #7 padding scheme is used to pad a message \vec{x} having length some integral number of bytes into a *encoded data* \vec{m} having length jL bytes where L is the block length in bytes. The number of bytes which are appended to \vec{x} to get \vec{m} is b where $1 \leq b \leq L$. Each of these padding bytes is equal to the byte representation of the integer b . Assume that $L < 256$ so b can fit in a single byte.

Suppose the encoded data \vec{m} has length $2L$ bytes, i.e. $\vec{m} = (m_1, m_2)$ where $|m_i| = L$ bytes for $i = 1, 2$. Now suppose the encoded data is encrypted using CTR mode where F is a length-preserving pseudorandom function as shown below. The input and output lengths of F_k are both equal to $n = 8L$ bits. Here the value IV is uniformly chosen from $\{0, 1\}^{\frac{3n}{4}}$.



Suppose an adversary can observe valid ciphertexts (c_0, c_1, c_2) . Additionally, the adversary has access to a padding oracle. On input some ciphertext block $\vec{c} = (c'_0, c'_1, c'_2)$, the padding oracle only returns a message from the set $\{\text{ok}, \text{padding_error}\}$. The **ok** is returned when there is no padding error in the encoded data \vec{m}' obtained from \vec{c} . Note that the adversary can also send $\vec{c} = (c'_0, c'_1)$ to the padding oracle.

- (a) [2 points] Describe a procedure by which the adversary can recover the **length** b of the padding in the encoded data \vec{m} .
- (b) [2 points] Suppose $b \leq L - 2$. Describe a procedure by which the adversary can recover the **last two message bytes** in m_2 . By last two bytes, we mean the rightmost two non-padding bytes in m_2 .
- (c) [2 points] Describe a procedure by which the adversary can recover the **last message byte** in m_1 . By last byte, we mean the rightmost byte in m_1 .

5. (a) [1 point] Show that the encryption scheme in question 3 is not CCA-secure.

(b) [1 point] Show that the CBC block cipher mode encryption scheme is not CCA-secure.

Note: Cipher Block Chaining (CBC) mode works as follows:

- Let $m = m_1, m_2, \dots, m_l$ where $m_i \in \{0, 1\}^n$.
- Let F be a length-preserving pseudorandom permutation with block length n .
- A uniform *initialization vector (IV)* of length n is first chosen.
- Set $c_0 = IV$. For $i = 1, \dots, l$, set $c_i := F_k(c_{i-1} \oplus m_i)$. The ciphertext is (c_0, c_1, \dots, c_l) .
- For $i = 1, 2, \dots, l$, $m_i := F_k^{-1}(c_i) \oplus c_{i-1}$.

(c) [1 point] Show that the CTR block cipher mode encryption scheme is not CCA-secure.

Note: Counter (CTR) mode works as follows:

- Let $m = m_1, m_2, \dots, m_l$ where $m_i \in \{0, 1\}^n$.
- Let F be a length-preserving pseudorandom function with block length n .
- A uniform value IV of length $\frac{3n}{4}$ is first chosen.
- Set $c_0 = IV$. For $i = 1, \dots, l$, set $c_i := F_k(IV \parallel i) \oplus m_i$. The ciphertext is (c_0, c_1, \dots, c_l) .
- For $i = 1, 2, \dots, l$, $m_i := F_k(IV \parallel i) \oplus c_i$.

Note: A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-ciphertext attack, or is **CCA-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n ,

$$\Pr \left[\text{PrivK}_{\mathcal{A}, \Pi}^{\text{cca}}(n) = 1 \right] \leq \frac{1}{2} + \text{negl}(n).$$

Specification of the experiment $\text{PrivK}_{\mathcal{A}, \Pi}^{\text{cca}}(n)$:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$ and $\text{Dec}_k(\cdot)$, and outputs a pair of messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
3. A uniform bit $b \in \{0, 1\}$ is chosen. Challenge ciphertext $c^* \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
4. The adversary \mathcal{A} continues to have oracle access to $\text{Enc}_k(\cdot)$ and $\text{Dec}_k(\cdot)$, but is not allowed to query Dec_k on the challenge ciphertext itself. Eventually, \mathcal{A} outputs a bit b' .
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If output is 1, we say that \mathcal{A} succeeds.

6. [3 points] Using a length-preserving pseudorandom function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, construct a CCA-secure encryption scheme for messages of length n . Describe the algorithms $(\text{Gen}, \text{Enc}, \text{Dec})$. You can use results discussed in class without proof.