

1. [5 points] Prove that the one-time pad is perfectly secret.

Note 1: The one-time pad has $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^n$. Gen chooses key k uniformly from \mathcal{K} . $\text{Enc}_k(m) = k \oplus m$ and $\text{Dec}_k(c) = k \oplus c$.

Note 2: An encryption scheme $(\text{Gen}, \text{Enc}, \text{Dec})$ with message space \mathcal{M} is **perfectly secret** if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m \mid C = c] = \Pr[M = m].$$

2. [5 points] Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme with message space \mathcal{M} and key space \mathcal{K} . Suppose that Enc is a deterministic function of the key $k \in \mathcal{K}$ and message $m \in \mathcal{M}$. Prove that Π is **not CPA-secure**.

Note: A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack, or is **CPA-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n ,

$$\Pr \left[\text{PrivK}_{\mathcal{A}, \Pi}^{\text{cpa}}(n) = 1 \right] \leq \frac{1}{2} + \text{negl}(n).$$

Specification of the experiment $\text{PrivK}_{\mathcal{A}, \Pi}^{\text{cpa}}(n)$:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary \mathcal{A} is given 1^n and oracle access to $\text{Enc}_k(\cdot)$, and outputs a pair of messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
3. A uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
4. The adversary \mathcal{A} continues to have oracle access to $\text{Enc}_k(\cdot)$, and outputs a bit b' .
5. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If output is 1, we say that \mathcal{A} succeeds.

3. [5 points] Alice has a length-preserving pseudorandom function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$. She wants to encrypt messages of length $2n$. Let $m \in \{0, 1\}^{2n}$ denote the message. Let $m_1 \in \{0, 1\}^n$ denote the first n bits of m and let $m_2 \in \{0, 1\}^n$ denote the last n bits of m . Alice uses the encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ where:

- **Gen:** Key k is chosen uniformly from $\{0, 1\}^n$.
- **Enc:** The message space $\mathcal{M} = \{0, 1\}^{2n}$. A string r is chosen uniformly from $\{0, 1\}^n$ and the ciphertext $c \in \{0, 1\}^{3n}$ corresponding to $m = (m_1, m_2) \in \{0, 1\}^{2n}$ is given by

$$c := \langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r) \rangle.$$

- **Dec:** Given key k and ciphertext $c = \langle r, c_1, c_2 \rangle \in \{0, 1\}^{3n}$, the message $m = (m_1, m_2)$ is decrypted using $m_1 = c_1 \oplus F_k(r)$ and $m_2 = c_2 \oplus F_k(r)$.

Prove that Alice's scheme is **not EAV-secure**.

Note: A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions in the presence of an eavesdropper, or is **EAV-secure**, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n ,

$$\Pr \left[\text{PrivK}_{\mathcal{A}, \Pi}^{\text{eav}}(n) = 1 \right] \leq \frac{1}{2} + \text{negl}(n).$$

Specification of the experiment $\text{PrivK}_{\mathcal{A}, \Pi}^{\text{eav}}(n)$:

1. The adversary \mathcal{A} is given 1^n and outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
2. A key k is generated using Gen , and a uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to \mathcal{A} . This ciphertext c is called the *challenge ciphertext*.
3. \mathcal{A} outputs a bit b' .
4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. We write $\text{PrivK}^{\text{eav}}_{\mathcal{A}, \Pi}(n) = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.

4. [5 points] Alice has a length-preserving pseudorandom function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$. She wants to authenticate messages of length $2n$. Let $m \in \{0, 1\}^{2n}$ denote the message. Let $m_1 \in \{0, 1\}^n$ denote the first n bits of m and let $m_2 \in \{0, 1\}^n$ denote the last n bits of m . Alice uses the encryption scheme $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ where:

- **Gen:** Key k is chosen uniformly from $\{0, 1\}^n$.
- **Mac:** The message space $\mathcal{M} = \{0, 1\}^{2n}$. Given key k , the tag corresponding to $m = (m_1, m_2) \in \{0, 1\}^{2n}$ is given by a $2n$ -bit string t as follows.

$$\text{Mac}_k(m) = t := \langle t_1, t_2 \rangle = \langle F_k(m_1), F_k(m_1 \oplus m_2) \rangle.$$

- **Vrfy:** Given key k , message $m = (m_1, m_2)$ and tag $t = \langle t_1, t_2 \rangle$, the verifier recomputes the tag on the message

$$t' := \langle t'_1, t'_2 \rangle = \langle F_k(m_1), F_k(m_1 \oplus m_2) \rangle.$$

If $t = t'$, then the verifier outputs 1 and 0 otherwise.

Prove that Alice's MAC scheme is **not** secure.

Note: A message authentication code $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is existentially unforgeable under an adaptive chosen-message attack, or just **secure**, if for all PPT adversaries \mathcal{A} , there is a negligible function negl such that:

$$\Pr[\text{Mac-forge}_{\mathcal{A}, \Pi}(n) = 1] \leq \text{negl}(n).$$

The message authentication experiment $\text{Mac-forge}_{\mathcal{A}, \Pi}(n)$ is defined as follows:

1. A key k is generated by running $\text{Gen}(1^n)$.
2. The adversary \mathcal{A} is given input 1^n and oracle access to $\text{Mac}_k(\cdot)$. The adversary eventually outputs (m, t) . Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked its oracle.
3. \mathcal{A} succeeds if and only if (1) $\text{Vrfy}_k(m, t) = 1$ and (2) $m \notin \mathcal{Q}$. If \mathcal{A} succeeds, the output of the experiment is 1. Otherwise, the output is 0.