

1. [5 points] Let  $a, b$  be positive integers. Prove the following statements.

- There exist integers  $X, Y$  such that  $Xa + Yb = \gcd(a, b)$ .
- $\gcd(a, b)$  is the smallest positive integer that can be expressed as an integer linear combination of  $a$  and  $b$ .

2. Let  $G$  be a finite group. Let  $H$  be a subgroup of  $G$ . For  $g \in G$ , the set  $H + g = \{h + g \mid h \in H\}$  is called a right coset of  $H$ . Prove the following.

- (a) [3 points] Two right cosets of  $H$  are either disjoint or equal.
- (b) [2 points] All right cosets of  $H$  have the same size.

3. [5 points] An element  $x \in \mathbb{Z}_N^*$  which satisfies  $x^{N-1} \neq 1 \pmod{N}$  is said to be a *witness* that  $N$  is composite.

For a given  $N$ , suppose there exists a witness that  $N$  is composite. Prove that at least half the elements of  $\mathbb{Z}_N^*$  are witnesses that  $N$  is composite.

4. [5 points] Prove that the Diffie-Hellman key exchange protocol is secure in the presence of an eavesdropper if the decisional Diffie-Hellman problem is hard relative to a cyclic group generation algorithm  $\mathcal{G}$ .

**Note:** The key-exchange experiment  $\mathsf{KE}_{\mathcal{A}, \Pi}^{\mathsf{eav}}(n)$ :

- Two parties holding  $1^n$  execute protocol  $\Pi$ . This results in a
  - transcript  $\mathsf{trans}$  containing all the messages sent by the parties, and
  - a key  $k$  output by each of the parties which belongs to some set  $\mathcal{K}$ .
- A uniform bit  $b \in \{0, 1\}$  is chosen.
  - If  $b = 0$ , set  $\hat{k} := k$
  - If  $b = 1$ , then choose uniform  $\hat{k} \in \mathcal{K}$ .
- $\mathcal{A}$  is given  $\mathsf{trans}$  and  $\hat{k}$ , and outputs a bit  $b'$
- The output of the experiment is defined to be 1 if  $b = b'$ , and 0 otherwise.

**Note:** A key-exchange protocol  $\Pi$  is **secure in the presence of an eavesdropper** if for all PPT adversaries  $\mathcal{A}$  there is a negligible function  $\mathsf{negl}$  such that

$$\Pr[\mathsf{KE}_{\mathcal{A}, \Pi}^{\mathsf{eav}}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n).$$

**Note:** Let  $\mathcal{G}$  denote a polynomial-time, cyclic group generation algorithm. Run  $\mathcal{G}(1^n)$  to obtain  $(G, q, g)$ , where  $G$  is a cyclic group of order  $q$  (with  $\|q\| = n$ ), and  $g$  is a generator of  $G$ . We say that the decisional Diffie-Hellman problem is hard relative to  $\mathcal{G}$  if for all PPT algorithms  $\mathcal{A}$  there exists a negligible function  $\mathsf{negl}$  such that

$$\left| \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1] \right| \leq \mathsf{negl}(n)$$

where  $x, y, z \in \mathbb{Z}_q$  are uniformly chosen